Chapter 12 Conditional Distribution and Conditional Expectation
In this Section, we consider further the joint behaviour of two random variables \(X\) and \(Y\), and in particular, studying the conditional distribution of one random variable given the other. We start with discrete random variables and then move onto continuous random variables.
12.1 Conditional distribution
Recall that for any two events \(E\) and \(F\) such that \(P(F)>0\), we defined in Section 4.6 that \[ P(E|F) = \frac{P(E \cap F)}{P(F)}.\]
Can we extend this idea to random variables?
Conditional p.m.f.
If \(X\) and \(Y\) are discrete random variables, the conditional probability mass function of \(X\) given \(Y=y\) iswhere \(p_{X,Y}(x,y)\) is the joint p.m.f. of \(X\) and \(Y\) and \(p_Y(y)\) is the marginal p.m.f. of \(Y\) for any \(x\) and \(y\) such that \(p_Y(y)>0\).
Note that
- Conditional probabilities are non-negative:
\[P(X=x|Y=y)=\frac{p_{X,Y}(x,y)}{p_Y(y)} \geq 0.\] - The sum of conditional probabilities over all values of \(x\) for some fixed value of \(y\) is \(1\):
\[\begin{align*} \sum_x P(X=x|Y=y) &= \sum\limits_x \frac{p_{X,Y}(x,y)}{p_Y(y)} \\ &= \frac{1}{p_Y(y)} \sum\limits_x p_{X,Y}(x,y) \\ &= \frac{1}{p_Y(y)}p_Y(y) \\ &= 1. \end{align*}\] This implies that \(P(X=x|Y=y)\) is itself a p.m.f.
Conditional c.d.f. (discrete random variable)
If \(X\) and \(Y\) are discrete random variables, the conditional (cumulative) probability distribution function of \(X\) given \(Y=y\) isSuppose the joint p.m.f. of \(X\) and \(Y\) is given by the following probability table.
X/Y | y=0 | y=1 | y=2 | y=3 |
---|---|---|---|---|
x=0 | 0 | \(\frac{1}{42}\) | \(\frac{2}{42}\) | \(\frac{3}{42}\) |
x=1 | \(\frac{2}{42}\) | \(\frac{3}{42}\) | \(\frac{4}{42}\) | \(\frac{5}{42}\) |
x=2 | \(\frac{4}{42}\) | \(\frac{5}{42}\) | \(\frac{6}{42}\) | \(\frac{7}{42}\) |
Determine the conditional p.m.f. of \(Y\) given \(X=1\).
The conditional p.m.f. of \(Y\) given \(X=1\) is therefore
We cannot extend this idea to the continuous case directly since for a continuous random variable \(Y\), and for any fixed value \(y\), one has \(P_Y(Y=y)=0\).
Conditional p.d.f.
If \(X\) and \(Y\) have a joint p.d.f. \(f_{X,Y}\), then the conditional probability density function of \(X\), given that \(Y=y\), is defined byConditional c.d.f. (continuous random variable)
Furthermore, we can define the conditional (cumulative) probability distribution function of \(X\), given \(Y=y\), as \[ F_{X|Y}(x|y) = P(X \leq x|Y=y) = \int_{-\infty}^x f_{X|Y}(u|y)du.\]
Find
- the conditional p.d.f. of \(X\) given \(Y=y\);
- the conditional p.d.f. of \(X\) given \(Y=\frac{1}{2}\).
- In Section 6.2, Example 1, we found
\[f_Y(y) = \begin{cases} 4(1-y)^3, \quad 0 \leq y \leq 1, \\[5pt] 0, \quad \text{otherwise.} \end{cases}\] Therefore,
\[\begin{align*} f_{X|Y}(x|y) &= \frac{f_{X,Y}(x,y)}{f_Y(y)} \\[9pt] &= \begin{cases} \frac{24x(1-x-y)}{4(1-y)^3}, \quad \text{if } x \geq 0, y \geq 0, x+y \leq 1, \\[5pt] 0, \quad \text{otherwise.} \end{cases} \end{align*}\] \[\begin{align*} f_{X|Y}\left(x \left|\frac{1}{2} \right. \right) &= \frac{f_{X,Y}(x,\frac{1}{2})}{f_Y(\frac{1}{2})} \\[9pt] &= \begin{cases} \frac{24x(1/2-x)}{4(1/2)^3} = 48x(\frac{1}{2}-x) , & \text{if } 0 \leq x \leq \frac{1}{2} \\[5pt] 0, & \text{otherwise.} \end{cases} \end{align*}\]
Note that conditional pdf’s are themselves pdf’s and have all the properties associated with pdf’s.
12.2 Conditional expectation
Conditional Expectation
The conditional expectation of \(X\), given \(Y=y\), is defined bySince \(f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}\), then \(f_{X,Y}(x,y) = f_{X|Y}(x|y)f_Y(y)\). Consequently, we can reconstruct the joint p.d.f. (p.m.f.) if we are given either:
the conditional p.d.f. (p.m.f.) of \(X\) given \(Y=y\) and the marginal p.d.f. (p.m.f.) of \(Y\);
the conditional p.d.f. (p.m.f.) of \(Y\) given \(X=x\) and the marginal p.d.f. (p.m.f.) of \(X\).
For \(y>0\), find
- \(P(X>1|Y=y)\);
- \(E[X|Y=y]\).
Attempt Exercise 1 and then watch Video 20 for the solutions.
Video 20: Conditional Distribution and Expectation
Alternatively the solutions are available:
Solution to Exercise 1
- For \(y>0\),
\[\begin{align*} f_Y(y) &= \int_{-\infty}^\infty f_{X,Y}(x,y) \,dx \\ &= \int_0^\infty e^{-(\frac{x}{y}+y)}y^{-1} \,dx \\ &= e^{-y} \end{align*}\] That is, the marginal distribution of \(Y\) is \(Y \sim {\rm Exp} (1)\).
Hence, for \(y>0\),
\[\begin{align*} f_{X|Y}(x|y) &= \frac{f_{X,Y}(x,y)}{f_Y(y)} \\ &= \begin{cases} e^{-x/y}y^{-1} & \text{if } x>0,\\ 0, & \text{if } x \leq 0. \end{cases} \end{align*}\] Therefore the conditional distribution of \(X|Y=y\) is \({\rm Exp} (1/y)\).
Thus,
\[\begin{align*} P(X>1|Y=y) &= \int_1^\infty f_{X|Y}(x|y) \,dx \\ &= \int_1^\infty e^{-x/y}y^{-1} \,dx \\ &= e^{-1/y}, \end{align*}\] which is the probability an \({\rm Exp} (1/y)\) random variable takes a value greater than 1.
- Furthermore
\[\begin{align*} E[X|Y=y] &= \int_{-\infty}^\infty x f_{X|Y}(x|y) \,dx \\ &= \int_0^\infty\frac{x}{y}e^{-x/y} \,dx \\ &=y. \end{align*}\] As expected since if \(W \sim {\rm Exp} (1/\theta)\), then \(E[W] = \theta\).
Many joint distributions are constructed in a similar manner, the marginal distribution of the first random variable along with the conditional distribution of the second random variable with respect to the first random variable. Such constructions are particularly common in Bayesian statistics. It enables us to understand key properties of the distribution such as conditional means and also to simulate values from the joint distribution.
The marginal distribution of \(X\) does not take a nice form with \(f_X (x) \rightarrow \infty\) as \(x \downarrow 0\), see Figure 12.1.
12.3 Independent random variables
Recall the definition of independence for random variables given in Section 6.4. If \(X\) and \(Y\) are independent continuous random variables, then for any \(y\) such that \(f_Y(y)>0\):Student Exercise
Attempt the exercise below.
Question.
Suppose that the joint probability density function of \(X\) and \(Y\) isFind
- the conditional probability density function of \(X\) given \(Y=y\), where \(y \in (0,1]\),
- \(E[X|Y=y],\) for \(y \in (0,1]\),
- \(P(X>\frac{1}{2} | Y=1)\).
Solution to Question.
- For \(y \in [0,1]\),
\[\begin{eqnarray*} f_Y(y) &=& \int_0^1 3y \left( x + \frac{1}{4}y \right) dx = \left[ 3y \left( \frac{1}{2}x^2 + \frac{1}{4}xy \right) \right]_0^1 \\ &=& 3y \left( \frac{1}{2} + \frac{1}{4}y \right) = \frac{3}{4}y(2+y). \end{eqnarray*}\] Hence, for \(y \in (0,1]\),
\[\begin{eqnarray*} f_{X|Y}(x|y) &=& \begin{cases} \frac{f_{X,Y}(x,y)}{f_Y(y)}, & 0 \leq x \leq 1, \\ 0 & \text{otherwise,} \end{cases} \\ &=& \begin{cases} \frac{3y(x+\frac{1}{4}y)}{\frac{3}{4}y(2+y)}, & 0 \leq x \leq 1, \\ 0 & \text{otherwise,} \end{cases} \\ &=& \begin{cases} \frac{4x+y}{2+y}, & 0 \leq x \leq 1, \\ 0 & \text{otherwise.} \end{cases} \\ \end{eqnarray*}\] - For \(y \in (0,1]\),
\[\begin{eqnarray*} E[X|Y=y] &=& \int_0^1 xf_{X|Y}(x|y) dx \\ &=& \int_0^1 x \frac{4x+y}{2+y} dx = \frac{1}{2+y} \int_0^1 x(4x+y) dx \\ &=& \frac{1}{2+y} \left[ \frac{4}{3}x^3 + \frac{1}{2}x^2y \right]_0^1 = \frac{1}{2+y} \left(\frac{4}{3} + \frac{1}{2}y\right) \\ &=& \frac{8+3y}{6(2+y)}. \end{eqnarray*}\] \[\begin{eqnarray*} P\left(\left. X>\frac{1}{2} \right|Y=1\right) &=& \int_{1/2}^1 f_{X|Y}(x|y=1) dx \\ &=& \frac{1}{3} \int_{1/2}^1 (4x+1) dx \\ &=& \frac{1}{3} \left[ 2x^2 + x \right]_{1/2}^1 \\ &=& \frac{1}{3} \left( 2 + 1 - \frac{2}{4} - \frac{1}{2} \right) = \frac{2}{3}. \end{eqnarray*}\]