Chapter 3 Time Series Data Pre-Processing and Visualization

## [1] "ts"
##         Qtr1    Qtr2    Qtr3    Qtr4
## 1956 1956.00 1956.25 1956.50 1956.75
## 1957 1957.00 1957.25 1957.50 1957.75
## 1958 1958.00 1958.25 1958.50 1958.75
## 1959 1959.00 1959.25 1959.50 1959.75
## 1960 1960.00 1960.25 1960.50 1960.75
## 1961 1961.00 1961.25 1961.50 1961.75
## 1962 1962.00 1962.25 1962.50 1962.75
## 1963 1963.00 1963.25 1963.50 1963.75
## 1964 1964.00 1964.25 1964.50 1964.75
## 1965 1965.00 1965.25 1965.50 1965.75
## 1966 1966.00 1966.25 1966.50 1966.75
## 1967 1967.00 1967.25 1967.50 1967.75
## 1968 1968.00 1968.25

## Warning in plot.window(xlim, ylim, log, ...): "h" is not a graphical
## parameter
## Warning in title(main = main, xlab = xlab, ylab = ylab, ...): "h" is not a
## graphical parameter
## Warning in box(...): "h" is not a graphical parameter

##      Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
## 1949 112 118 132 129 121 135 148 148 136 119 104 118
## 1950 115 126 141 135 125 149 170 170 158 133 114 140
## 1951 145 150 178 163 172 178 199 199 184 162 146 166
## 1952 171 180 193 181 183 218 230 242 209 191 172 194
## 1953 196 196 236 235 229 243 264 272 237 211 180 201
## 1954 204 188 235 227 234 264 302 293 259 229 203 229
## 1955 242 233 267 269 270 315 364 347 312 274 237 278
## 1956 284 277 317 313 318 374 413 405 355 306 271 306
## 1957 315 301 356 348 355 422 465 467 404 347 305 336
## 1958 340 318 362 348 363 435 491 505 404 359 310 337
## 1959 360 342 406 396 420 472 548 559 463 407 362 405
## 1960 417 391 419 461 472 535 622 606 508 461 390 432

## Parsed with column specification:
## cols(
##   X1 = col_character(),
##   X2 = col_double()
## )
## [1] "character"
## Error in select(., -`1:25`): unused argument (-`1:25`)
## Warning in zoo(irregts.df$measurement, order.by = irregts.df$date): some
## methods for "zoo" objects do not work if the index entries in 'order.by'
## are not unique
## 2017-05-16 2017-05-17 2017-05-18 2017-05-19 2017-05-20 2017-05-21 
##   334.5000   439.2000   349.2000   345.2000   419.5000   352.9000 
## 2017-05-22 2017-05-23 2017-05-24 2017-05-25 2017-05-26 2017-05-27 
##   372.2000   402.4500   309.5000   382.0000   432.6000   392.6000 
## 2017-05-28 2017-05-29 2017-05-30 2017-05-31 
##   391.0000   405.0000   369.9500   338.2333
## [1] 16
##  [1] "2017-05-16 10:34:00 IST" "2017-05-17 15:23:00 IST"
##  [3] "2017-05-17 20:45:00 IST" "2017-05-18 03:23:00 IST"
##  [5] "2017-05-18 12:34:00 IST" "2017-05-19 11:34:00 IST"
##  [7] "2017-05-20 12:34:00 IST" "2017-05-21 12:34:00 IST"
##  [9] "2017-05-22 17:45:00 IST" "2017-05-22 06:02:00 IST"
## [11] "2017-05-23 04:45:00 IST" "2017-05-23 12:34:00 IST"
## [13] "2017-05-24 02:35:00 IST" "2017-05-25 04:27:00 IST"
## [15] "2017-05-26 15:39:00 IST" "2017-05-27 06:29:00 IST"
## [17] "2017-05-28 07:29:00 IST" "2017-05-29 05:49:00 IST"
## [19] "2017-05-30 07:49:00 IST" "2017-05-30 08:34:00 IST"
## [21] "2017-05-30 13:37:00 IST" "2017-05-30 15:45:00 IST"
## [23] "2017-05-31 05:37:00 IST" "2017-05-31 08:38:00 IST"
## [25] "2017-05-31 16:45:00 IST"
## Error in select(., date, measurement): unused arguments (date, measurement)
## Error in eval(expr, envir, enclos): object 'irreg.dates1' not found
## 2017-05-16 10:34:00 2017-05-17 15:23:00 2017-05-17 20:45:00 
##               334.5               385.9               492.5 
## 2017-05-18 03:23:00 2017-05-18 12:34:00 2017-05-19 11:34:00 
##               325.8               372.6               345.2 
## 2017-05-20 12:34:00 2017-05-21 12:34:00 2017-05-22 06:02:00 
##               419.5               352.9               392.5 
## 2017-05-22 17:45:00 2017-05-23 04:45:00 2017-05-23 12:34:00 
##               351.9               401.3               403.6 
## 2017-05-24 02:35:00 2017-05-25 04:27:00 2017-05-26 15:39:00 
##               309.5               382.0               432.6 
## 2017-05-27 06:29:00 2017-05-28 07:29:00 2017-05-29 05:49:00 
##               392.6               391.0               405.0 
## 2017-05-30 07:49:00 2017-05-30 08:34:00 2017-05-30 13:37:00 
##               392.5               372.5               312.7 
## 2017-05-30 15:45:00 2017-05-31 05:37:00 2017-05-31 08:38:00 
##               402.1               305.1               402.5 
## 2017-05-31 16:45:00 
##               307.1

## 2017-05-16 2017-05-17 2017-05-18 2017-05-19 2017-05-20 2017-05-21 
##   334.5000   439.2000   349.2000   345.2000   419.5000   352.9000 
## 2017-05-22 2017-05-23 2017-05-24 2017-05-25 2017-05-26 2017-05-27 
##   372.2000   402.4500   309.5000   382.0000   432.6000   392.6000 
## 2017-05-28 2017-05-29 2017-05-30 2017-05-31 
##   391.0000   405.0000   369.9500   338.2333

## Warning: Missing column names filled in: 'X1' [1]
## Parsed with column specification:
## cols(
##   X1 = col_double(),
##   mydata = col_double()
## )
## Time Series:
## Start = 1 
## End = 250 
## Frequency = 1 
##   [1]  32.801464  42.465485         NA  32.204058  55.557647  33.050864
##   [7]  43.401620  37.768318  22.844180  36.428877  28.496485  59.037881
##  [13]  36.544163  26.668135  41.325626  28.913199  38.595417  31.341447
##  [19]  34.547023         NA  30.499324  49.391323  43.976004  22.162741
##  [25]  19.439525  41.892407  30.321857  32.899878  17.686235  10.332791
##  [31]  31.612958  40.011275  35.378517  46.167222  26.903207  36.304821
##  [37]  23.408770  42.785841  31.919674  37.571226  33.907485  17.698917
##  [43]  19.931775  23.971169 999.000000  32.853670  33.012320  47.893249
##  [49]  33.961104  40.826518  34.389579  27.210322  41.815827         NA
##  [55]  49.711080  37.246486  34.472507  27.554913  37.976930  24.503481
##  [61]  33.941547  28.582326  17.945402  40.335543  32.103075  15.609346
##  [67]  38.637130  58.877558  42.178769  34.075469  29.208206  20.409934
##  [73]  23.682860  49.014566  59.160903  24.994359  37.321672  11.830421
##  [79]  49.907975  33.288427  25.900307  34.661099  38.170951  30.246685
##  [85]  45.001326  36.082827  38.969588  24.260726   8.619401  33.933167
##  [91]  30.158056  32.211135  46.688584  36.399098  27.266510  39.706101
##  [97]  48.560701 999.000000  31.011612  33.565184  41.850476  45.780926
## [103]  21.679404  32.340497  55.904896  17.349895  32.994516  36.155426
## [109]  47.089342  33.955275  36.563838  18.773382  28.077605  40.483324
## [115]  41.341771  32.907839  59.604911  20.989279  46.886734  53.931163
## [121]  44.662468  43.125045  25.800244  22.833920  51.397357  34.775922
## [127]  50.922532  36.430258  32.975690  37.659017  48.006323  49.901919
## [133]  20.619643  24.895206   4.682543  17.049461  45.618543  28.288209
## [139]  50.446258  34.983971  38.847283  32.301493  46.044574  21.739473
## [145]  16.457915  36.157602  35.773314  23.368300  34.220736  39.443674
## [151]  26.074044  28.599269  45.410516         NA  30.585004  23.405284
## [157]  36.949438  17.647508  22.991044  40.388899  30.654440  49.261182
## [163]  31.215505  30.462442  41.294423  28.046393  24.925970  23.934094
## [169]  41.690112  46.226476  40.741721 999.000000  26.455048  12.766929
## [175]  38.133315  61.653241  11.474054  41.835335  34.572898  59.921615
## [181]  53.072688  51.889866  43.700888  33.639492  24.988901  27.019376
## [187]  12.774882  21.001551  18.133113  48.563807  64.633075  29.362668
## [193]  45.478245  34.152629  50.573869  43.564419  57.644084  20.785408
## [199]  39.811707  51.854335  33.351763  23.242107  34.351879  28.113792
## [205]  33.952911  35.372668  38.059841  40.818440  45.768335  39.272128
## [211] 999.000000  36.665537  50.282893  34.561040  46.040830  39.936308
## [217]  39.873144  51.126396   2.683472  51.667975  41.336229  43.090450
## [223]  24.686842  52.300908  37.379943  19.043254  43.512121  54.236360
## [229]  33.557160  33.851597         NA  36.149460  32.985037  31.422766
## [235]  36.574851  29.648483  18.290954  38.154075  34.446452  12.037743
## [241]  23.581530  36.968395  50.747174  37.981389  28.693203  32.396009
## [247]  41.325484  30.017571  14.818111  45.403854
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   2.683  28.078  34.573  50.710  42.465 999.000       5

## $index
## [1]  45  98 172 211
## 
## $replacements
## [1] 28.41242 39.78616 33.59838 37.96883

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   2.683  28.157  34.567  35.025  41.830  64.633