Chapter 2 Linear Regression Analysis (LRA)
Following packages and functions are used in this chapter:
## basic packages
library(knitr)
library(kableExtra)
library(tidyverse)
library(conflicted)
library(magrittr)
library(broom)
## paticular packages for this project
library(lmtest)
library(corrr)
library(tseries)
library(corrplot)
library(car)
library(perturb)
library(modelr)
source("../src/funcs.R")
source("../src/tests.R")
## Data and PSMs
source("../docs/census.R")
#> Warning: Missing column names filled in: 'X1' [1]
#> Warning: Missing column names filled in: 'X1' [1]
Data
The dataset delivery
is from (Montgomery, Peck, and Vining 2012):
dat_delivery <-
readxl::read_xls("../data/delivery.xls", col_names = c("i", "time", "case",
"dist"), skip = 1)
The dataset acetylene
is from (Montgomery, Peck, and Vining 2012):
To-Learn
- confidence interval
- MSA
- Likelihood Ratio Test
- strong exogeneity
- ANOVA
- Orthogonalization
References
Montgomery, Douglas C, Elizabeth A Peck, and G Geoffrey Vining. 2012. Introduction to Linear Regression Analysis. Vol. 821. John Wiley & Sons.