References

Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. SAGE.
Allan, A., Cook, D., Gayler, R., Kirk, H., Peng, R., & Saber, E. (2017). ochRe: Australia-themed colour palettes [Manual]. https://github.com/ropenscilabs/ochRe
Arnold, J. B. (2021). ggthemes: Extra themes, scales and geoms for ’ggplot2’. https://CRAN.R-project.org/package=ggthemes
Baron, R. M., & Kenny, D. A. (1986). The moderatormediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182. https://doi.org/10.1037/0022-3514.51.6.1173
Bauer, D. J., & Curran, P. J. (2005). Probing interactions in fixed and multilevel regression: Inferential and graphical techniques. Multivariate Behavioral Research, 40(3), 373–400. https://doi.org/10.1207/s15327906mbr4003_5
Bem, D. J. (1987). Writing the empirical journal article. In M. P. Zanna & J. M. Darley (Eds.), The complete academic: A practical guide for the beginning social scientist (pp. 171–201). Lawrence Erlbaum Associates.
BibTeX. (2020). http://www.bibtex.org/
Bolger, N., Zee, K. S., Rossignac-Milon, M., & Hassin, R. R. (2019). Causal processes in psychology are heterogeneous. Journal of Experimental Psychology: General, 148(4), 601–618. https://doi.org/10.1037/xge0000558
Brilleman, S., Crowther, M., Moreno-Betancur, M., Buros Novik, J., & Wolfe, R. (2018). Joint longitudinal and time-to-event models via Stan. https://github.com/stan-dev/stancon_talks/
Bürkner, P.-C. (2021a). Estimating distributional models with brms. https://CRAN.R-project.org/package=brms/vignettes/brms_distreg.html
Bürkner, P.-C. (2021b). Estimating multivariate models with brms. https://CRAN.R-project.org/package=brms/vignettes/brms_multivariate.html
Bürkner, P.-C. (2021c). Handle missing values with brms. https://CRAN.R-project.org/package=brms/vignettes/brms_missings.html
Bürkner, P.-C. (2021d). Parameterization of response distributions in brms. https://CRAN.R-project.org/package=brms/vignettes/brms_families.html
Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80(1), 1–28. https://doi.org/10.18637/jss.v080.i01
Bürkner, P.-C. (2018). Advanced Bayesian multilevel modeling with the R package brms. The R Journal, 10(1), 395–411. https://doi.org/10.32614/RJ-2018-017
Bürkner, P.-C. (2020). brms: Bayesian regression models using ’Stan. https://CRAN.R-project.org/package=brms
Bürkner, P.-C. (2021e). brms reference manual, Version 2.15.0. https://CRAN.R-project.org/package=brms/brms.pdf
Chang, W. (2014). Extrafont: Tools for using fonts. https://cran.r-project.org/package=extrafont/
Chapman, D. A., & Lickel, B. (2016). Climate change and disasters: How framing affects justifications for giving or withholding aid to disaster victims. Social Psychological and Personality Science, 7(1), 13–20. https://doi.org/10.1177/1948550615590448
Cheong, J., MacKinnon, D. P., & Khoo, S. T. (2003). Investigation of mediational processes using parallel process latent growth curve modeling. Structural Equation Modeling : A Multidisciplinary Journal, 10(2), 238. https://doi.org/10.1207/S15328007SEM1002_5
Cohen, J. (1968). Multiple regression as a general data-analytic system. Psychological Bulletin, 70(6, Pt.1), 426–443. https://doi.org/10.1037/h0026714
Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd edition). Lawrence Erlbaum Associates. https://doi.org/10.4324/9780203774441
Cole, D. A., & Maxwell, S. E. (2003). Testing mediational models with longitudinal data: Questions and tips in the use of structural equation modeling. Journal of Abnormal Psychology, 112(4), 558–577. https://doi.org/10.1037/0021-843X.112.4.558
Cumming, G. (2014). The new statistics: Why and how. Psychological Science, 25(1), 7–29. https://doi.org/10.1177/0956797613504966
Darlington, R. B., & Hayes, A. F. (2017). Regression analysis and linear models: Concepts, applications, and implementation. Guilford Press. https://www.guilford.com/books/Regression-Analysis-and-Linear-Models/Darlington-Hayes/9781462521135/reviews
Dawson, J. F. (2014). Moderation in management research: What, why, when, and how. Journal of Business and Psychology, 29(1), 1–19. https://doi.org/10.1007/s10869-013-9308-7
Dawson, J. F., & Richter, A. W. (2006). Probing three-way interactions in moderated multiple regression: Development and application of a slope difference test. Journal of Applied Psychology, 91(4), 917–926. https://doi.org/10.1037/0021-9010.91.4.917
Earp, B. D., & Trafimow, D. (2015). Replication, falsification, and the crisis of confidence in social psychology. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.00621
Enders, C. K. (2010). Applied missing data analysis. Guilford press. http://www.appliedmissingdata.com/
Gabry, J. (2019). Graphical posterior predictive checks using the bayesplot package. https://CRAN.R-project.org/package=bayesplot/vignettes/graphical-ppcs.html
Gabry, J. (2020). loo reference manual, Version 2.4.1. https://CRAN.R-project.org/package=loo/loo.pdf
Gabry, J., & Goodrich, B. (2020). rstanarm: Bayesian applied regression modeling via stan [Manual]. https://CRAN.R-project.org/package=rstanarm
Gabry, J., & Mahr, T. (2021). bayesplot: Plotting for Bayesian models. https://CRAN.R-project.org/package=bayesplot
Gabry, J., & Modrák, M. (2020). Visual MCMC diagnostics using the bayesplot package. https://CRAN.R-project.org/package=bayesplot/vignettes/visual-mcmc-diagnostics.html
Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A. (2019). Visualization in Bayesian workflow. Journal of the Royal Statistical Society: Series A (Statistics in Society), 182(2), 389–402. https://doi.org/10.1111/rssa.12378
Galak, J., LeBoeuf, R. A., Nelson, L. D., & Simmons, J. P. (2012). Correcting the past: Failures to replicate psi. Journal of Personality and Social Psychology, 103(6), 933–948. https://doi.org/10.1037/a0029709
Garnier, S. (2021). viridis: Default color maps from ’matplotlib’ [Manual]. https://CRAN.R-project.org/package=viridis
Gelman, A. (2015). The connection between varying treatment effects and the crisis of unreplicable research: A Bayesian perspective. Journal of Management, 41(2), 632–643. https://doi.org/10.1177/0149206314525208
Gelman, A., & Carlin, J. (2014). Beyond power calculations: Assessing type S (sign) and type M (magnitude) errors. Perspectives on Psychological Science, 9(6), 641–651. https://doi.org/10.1177/1745691614551642
Gelman, A., Goodrich, B., Gabry, J., & Vehtari, A. (2019). R-squared for Bayesian regression models. The American Statistician, 73(3), 307–309. https://doi.org/10.1080/00031305.2018.1549100
Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical models. Cambridge University Press. https://doi.org/10.1017/CBO9780511790942
Gelman, A., & Stern, H. (2006). The difference between “significant” and “not significant” is not itself statistically significant. The American Statistician, 60(4), 328–331. https://doi.org/10.1198/000313006X152649
Grantham, N. (2019). ggdark: Dark mode for ’ggplot2’ themes [Manual]. https://CRAN.R-project.org/package=ggdark
Grolemund, G., & Wickham, H. (2017). R for data science. O’Reilly. https://r4ds.had.co.nz
Hamaker, E. L. (2012). Why researchers should think "within-person": A paradigmatic rationale. In Handbook of research methods for studying daily life (pp. 43–61). The Guilford Press. https://www.guilford.com/books/Handbook-of-Research-Methods-for-Studying-Daily-Life/Mehl-Conner/9781462513055
Hayes, Andrew F. (2015). An index and test of linear moderated mediation. Multivariate Behavioral Research, 50(1), 1–22. https://doi.org/10.1080/00273171.2014.962683
Hayes, Andrew F. (2005). Statistical methods for communication science. Routledge. https://doi.org/10.4324/9781410613707
Hayes, Andrew F. (2018). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach (Second edition). The Guilford Press. https://www.guilford.com/books/Introduction-to-Mediation-Moderation-and-Conditional-Process-Analysis/Andrew-Hayes/9781462534654
Hayes, Andrew F., Slater, M. D., & Snyder, L. B. (2008). The SAGE sourcebook of advanced data analysis methods for communication research. https://us.sagepub.com/en-us/nam/the-sage-sourcebook-of-advanced-data-analysis-methods-for-communication-research/book228339
Healy, K. (2018). Data visualization: A practical introduction. Princeton University Press. https://socviz.co/
Heyns, E. (2020). Better BibTeX for zotero. https://retorque.re/zotero-better-bibtex/
Hocking, T. D. (2021). Directlabels: Direct labels for multicolor plots [Manual]. https://CRAN.R-project.org/package=directlabels
IBM Corporation. (2020). IBM SPSS Statistics for Windows. https://www.ibm.com/products/spss-statistics
Imai, K., Keele, L., & Tingley, D. (2010). A general approach to causal mediation analysis. Psychological Methods, 15(4), 309–334. https://doi.org/10.1037/a0020761
Jaccard, J., & Turrisi, R. (2003). Interaction effects in multiple regression (2nd edition). Sage Publications. https://dx.doi.org/10.4135/9781412984522
Kay, M. (2020a). Extracting and visualizing tidy draws from brms models. https://mjskay.github.io/tidybayes/articles/tidy-brms.html
Kay, M. (2020b). tidybayes: Tidy data and ’geoms’ for Bayesian models. https://mjskay.github.io/tidybayes/
Kelley, K., & Preacher, K. J. (2012). On effect size. Psychological Methods, 17(2), 137. https://doi.org/10.1037/a0028086
Klein, R. A., Cook, C. L., Ebersole, C. R., Vitiello, C., Nosek, B. A., Chartier, C. R., Christopherson, C. D., Clay, S., Collisson, B., Crawford, J., Cromar, R., Vidamuerte, D., Gardiner, G., Gosnell, C., Grahe, J., Hall, C., Joy-Gaba, J., Legg, A. M., Levitan, C., … Ratliff, K. (2019). Many Labs 4: Failure to replicate mortality salience effect with and without original author involvement. PsyArXiv. https://doi.org/10.31234/osf.io/vef2c
Kruschke, J. K. (2015). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Academic Press. https://sites.google.com/site/doingbayesiandataanalysis/
Kruschke, J. K., & Liddell, T. M. (2018). The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin & Review, 25(1), 178–206. https://doi.org/10.3758/s13423-016-1221-4
Kurz, A. S. (2021). Statistical rethinking with brms, ggplot2, and the tidyverse: Second Edition (version 0.2.0). https://bookdown.org/content/4857/
Kurz, A. S. (2020a). Doing Bayesian data analysis in brms and the tidyverse (version 0.4.0). https://bookdown.org/content/3686/
Kurz, A. S. (2020b). Statistical rethinking with brms, ggplot2, and the tidyverse (version 1.2.0). https://doi.org/10.5281/zenodo.3693202
Legler, J., & Roback, P. (2019). Broadening your statistical horizons: Generalized linear models and multilevel models. https://bookdown.org/roback/bookdown-bysh/
Little, T. D., Preacher, K. J., Selig, J. P., & Card, N. A. (2007). New developments in latent variable panel analyses of longitudinal data. International Journal of Behavioral Development, 31(4), 357–365. https://doi.org/10.1177/0165025407077757
Lucas, T. (2016). palettetown: Use Pokemon inspired colour palettes [Manual]. https://CRAN.R-project.org/package=palettetown
Maxwell, S. E., & Cole, D. A. (2007). Bias in cross-sectional analyses of longitudinal mediation. Psychological Methods, 12(1), 23–44. https://doi.org/10.1037/1082-989X.12.1.23
Maxwell, S. E., Cole, D. A., & Mitchell, M. A. (2011). Bias in cross-sectional analyses of longitudinal mediation: Partial and complete mediation under an autoregressive model. Multivariate Behavioral Research, 46(5), 816–841. https://doi.org/10.1080/00273171.2011.606716
McCabe, C. J., Kim, D. S., & King, K. M. (2018). Improving present practices in the visual display of interactions. Advances in Methods and Practices in Psychological Science, 1(2), 147–165. https://doi.org/10.1177/2515245917746792
McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in R and Stan (Second Edition). CRC Press. https://xcelab.net/rm/statistical-rethinking/
McElreath, R. (2015). Statistical rethinking: A Bayesian course with examples in R and Stan. CRC press. https://xcelab.net/rm/statistical-rethinking/
Meredith, M., & Kruschke, J. (2018). HDInterval: Highest (posterior) density intervals [Manual]. https://CRAN.R-project.org/package=HDInterval
Merkle, E. C., & Rosseel, Y. (2018). blavaan: Bayesian structural equation models via parameter expansion. Journal of Statistical Software, 85(4), 1–30. https://doi.org/10.18637/jss.v085.i04
Merkle, E. C., Rosseel, Y., & Goodrich, B. (2020). blavaan: Bayesian latent variable analysis. https://CRAN.R-project.org/package=blavaan
Miočević, M., MacKinnon, D. P., & Levy, R. (2017). Power in Bayesian mediation analysis for small sample research. Structural Equation Modeling: A Multidisciplinary Journal, 24(5), 666–683. https://doi.org/10.1080/10705511.2017.1312407
Mitchell, M. A., & Maxwell, S. E. (2013). A comparison of the cross-sectional and sequential designs when assessing longitudinal mediation. Multivariate Behavioral Research, 48(3), 301–339. https://doi.org/10.1080/00273171.2013.784696
Muthén, B., & Asparouhov, T. (2015). Causal effects in mediation modeling: An introduction with applications to latent variables. Structural Equation Modeling: A Multidisciplinary Journal, 22(1), 12–23. https://doi.org/10.1080/10705511.2014.935843
Navarro, D. (2019). Learning statistics with R. https://learningstatisticswithr.com
Nelson, L. D., Simmons, J., & Simonsohn, U. (2018). Psychology’s renaissance. Annual Review of Psychology, 69(1), 511–534. https://doi.org/10.1146/annurev-psych-122216-011836
Pashler, H., & Wagenmakers, E. (2012). Editors’ introduction to the special section on replicability in psychological science: A crisis of confidence? Perspectives on Psychological Science, 7(6), 528–530. https://doi.org/10.1177/1745691612465253
Peng, R. D. (2019). R programming for data science. https://bookdown.org/rdpeng/rprogdatascience/
Peng, R. D., Kross, S., & Anderson, B. (2017). Mastering software development in {}R{}. https://github.com/rdpeng/RProgDA
Preacher, K. J., & Kelley, K. (2011). Effect size measures for mediation models: Quantitative strategies for communicating indirect effects. Psychological Methods, 16(2), 93–115. https://doi.org/10.1037/a0022658
Preacher, K. J., Rucker, D. D., & Hayes, A. F. (2007). Addressing moderated mediation hypotheses: Theory, methods, and prescriptions. Multivariate Behavioral Research, 42(1), 185–227. https://doi.org/10.1080/00273170701341316
R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Revelle, W. (2021). psych: Procedures for psychological, psychometric, and personality research. https://CRAN.R-project.org/package=psych
Ripley, B. (2019). MASS: Support functions and datasets for venables and ripley’s MASS. https://CRAN.R-project.org/package=MASS
Rogosa, D. (1980). Comparing nonparallel regression lines. Psychological Bulletin, 88(2), 307–321. https://doi.org/10.1037/0033-2909.88.2.307
Rosseel, Y., & Jorgensen, T. D. (2019). lavaan: Latent variable analysis [Manual]. https://lavaan.org
Roy Rosenzweig Center for History and New Media. (2020). Zotero. https://www.zotero.org/
SAS/IML software. (2020). https://www.sas.com/
Selig, J. P., & Preacher, K. J. (2009). Mediation models for longitudinal data in developmental research. Research in Human Development, 6(2-3), 144–164. https://doi.org/10.1080/15427600902911247
Spiller, S. A., Fitzsimons, G. J., Lynch, J. G., & Mcclelland, G. H. (2013). Spotlights, floodlights, and the magic number zero: Simple effects tests in moderated regression. Journal of Marketing Research, 50(2), 277–288. https://doi.org/10.1509/jmr.12.0420
Stan Development Team. (2020). RStan: The R interface to Stan. https://cran.r-project.org/web/packages/rstan/vignettes/rstan.html
Stan Development Team. (2021). Stan user’s guide, Version 2.26. https://mc-stan.org/docs/2_26/stan-users-guide/index.html
Thoen, E. (2019). dutchmasters [Manual]. https://github.com/EdwinTh/dutchmasters
Torres-Manzanera, E. (n.d.). Xkcd: Plotting XKCD graphs. Journal of Statistical Software, 12. https://cran.r-project.org/package=xkcd/vignettes/xkcd-intro.pdf
Torres-Manzanera, E. (2018). Xkcd: Plotting ggplot2 graphics in an XKCD style. https://CRAN.R-project.org/package=xkcd
Tufte, E. R. (2001). The visual display of quantitative information (Second Edition). Graphics Press. https://www.edwardtufte.com/tufte/books_vdqi
Valente, M. J., & MacKinnon, D. P. (2017). Comparing models of change to estimate the mediated effect in the pretest-posttest control group design. Structural Equation Modeling : A Multidisciplinary Journal, 24(3), 428–450. https://doi.org/10.1080/10705511.2016.1274657
Valeri, L., & VanderWeele, T. J. (2013). Mediation analysis allowing for exposuremediator interactions and causal interpretation: Theoretical assumptions and implementation with SAS and SPSS macros. Psychological Methods, 18(2), 137. https://doi.org/10.1037/a0031034
van Buuren, S. (2018). Flexible imputation of missing data (Second Edition). CRC Press. https://stefvanbuuren.name/fimd/
VanderWeele, T. (2015). Explanation in causal inference: Methods for mediation and interaction (1st edition). Oxford University Press.
Vehtari, A., & Gabry, J. (2020). Using the loo package (version \(>\)= 2.0.0). https://CRAN.R-project.org/package=loo/vignettes/loo2-example.html
Vehtari, A., & Gabry, J. (2019). Bayesian stacking and pseudo-BMA weights using the loo package. https://CRAN.R-project.org/package=loo/vignettes/loo2-weights.html
Vehtari, A., Gabry, J., Magnusson, M., Yao, Y., & Gelman, A. (2019). loo: Efficient leave-one-out cross-validation and WAIC for bayesian models. https://CRAN.R-project.org/package=loo/
Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27(5), 1413–1432. https://doi.org/10.1007/s11222-016-9696-4
Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P.-C. (2019). Rank-normalization, folding, and localization: An improved \(\widehat R\) for assessing convergence of MCMC. arXiv Preprint arXiv:1903.08008. https://arxiv.org/abs/1903.08008?
Vermeer, J. (1657). The little street.
Vuorre, M. (2017). bmlm: Bayesian multilevel mediation [Manual]. https://cran.r-project.org/package=bmlm
Vuorre, M. (2019). bmlm: Bayesian multilevel mediation [Manual]. https://github.com/mvuorre/bmlm/
Vuorre, M., & Bolger, N. (2018). Within-subject mediation analysis for experimental data in cognitive psychology and neuroscience. Behavior Research Methods, 50(5), 2125–2143. https://doi.org/10.3758/s13428-017-0980-9
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. https://ggplot2-book.org/
Wickham, H. (2019). tidyverse: Easily install and load the ’tidyverse’. https://CRAN.R-project.org/package=tidyverse
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686
Xie, Y. (2016). bookdown: Authoring books and technical documents with R markdown. Chapman and Hall/CRC. https://bookdown.org/yihui/bookdown/
Xie, Y. (2020). bookdown: Authoring books and technical documents with R Markdown. https://CRAN.R-project.org/package=bookdown
Xie, Y., Allaire, J. J., & Grolemund, G. (2020). R markdown: The definitive guide. Chapman and Hall/CRC. https://bookdown.org/yihui/rmarkdown/
Yao, Y., Vehtari, A., Simpson, D., & Gelman, A. (2018). Using stacking to average Bayesian predictive distributions (with discussion). Bayesian Analysis, 13(3), 917–1007. https://doi.org/10.1214/17-BA1091
Yong, E. (2012). Replication studies: Bad copy. Nature News, 485(7398), 298. https://doi.org/10.1038/485298a
Yuan, Y., & MacKinnon, D. P. (2009). Bayesian mediation analysis. Psychological Methods, 14(4), 301–322. https://doi.org/10.1037/a0016972