Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. SAGE.
Allan, A., Cook, D., Gayler, R., Kirk, H., Peng, R., & Saber, E. (2017). ochRe: Australia-themed colour palettes [Manual].
Arnold, J. B. (2021). ggthemes: Extra themes, scales and geoms for ’ggplot2’.
Baron, R. M., & Kenny, D. A. (1986). The moderatormediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182.
Bauer, D. J., & Curran, P. J. (2005). Probing interactions in fixed and multilevel regression: Inferential and graphical techniques. Multivariate Behavioral Research, 40(3), 373–400.
Bem, D. J. (1987). Writing the empirical journal article. In M. P. Zanna & J. M. Darley (Eds.), The complete academic: A practical guide for the beginning social scientist (pp. 171–201). Lawrence Erlbaum Associates.
BibTeX. (2020).
Bolger, N., Zee, K. S., Rossignac-Milon, M., & Hassin, R. R. (2019). Causal processes in psychology are heterogeneous. Journal of Experimental Psychology: General, 148(4), 601–618.
Brilleman, S., Crowther, M., Moreno-Betancur, M., Buros Novik, J., & Wolfe, R. (2018). Joint longitudinal and time-to-event models via Stan.
Bürkner, P.-C. (2021a). Estimating distributional models with brms.
Bürkner, P.-C. (2021b). Estimating multivariate models with brms.
Bürkner, P.-C. (2021c). Handle missing values with brms.
Bürkner, P.-C. (2021d). Parameterization of response distributions in brms.
Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80(1), 1–28.
Bürkner, P.-C. (2018). Advanced Bayesian multilevel modeling with the R package brms. The R Journal, 10(1), 395–411.
Bürkner, P.-C. (2020). brms: Bayesian regression models using ’Stan.
Bürkner, P.-C. (2021e). brms reference manual, Version 2.15.0.
Chang, W. (2014). Extrafont: Tools for using fonts.
Chapman, D. A., & Lickel, B. (2016). Climate change and disasters: How framing affects justifications for giving or withholding aid to disaster victims. Social Psychological and Personality Science, 7(1), 13–20.
Cheong, J., MacKinnon, D. P., & Khoo, S. T. (2003). Investigation of mediational processes using parallel process latent growth curve modeling. Structural Equation Modeling : A Multidisciplinary Journal, 10(2), 238.
Cohen, J. (1968). Multiple regression as a general data-analytic system. Psychological Bulletin, 70(6, Pt.1), 426–443.
Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd edition). Lawrence Erlbaum Associates.
Cole, D. A., & Maxwell, S. E. (2003). Testing mediational models with longitudinal data: Questions and tips in the use of structural equation modeling. Journal of Abnormal Psychology, 112(4), 558–577.
Cumming, G. (2014). The new statistics: Why and how. Psychological Science, 25(1), 7–29.
Darlington, R. B., & Hayes, A. F. (2017). Regression analysis and linear models: Concepts, applications, and implementation. Guilford Press.
Dawson, J. F. (2014). Moderation in management research: What, why, when, and how. Journal of Business and Psychology, 29(1), 1–19.
Dawson, J. F., & Richter, A. W. (2006). Probing three-way interactions in moderated multiple regression: Development and application of a slope difference test. Journal of Applied Psychology, 91(4), 917–926.
Earp, B. D., & Trafimow, D. (2015). Replication, falsification, and the crisis of confidence in social psychology. Frontiers in Psychology, 6.
Enders, C. K. (2010). Applied missing data analysis. Guilford press.
Gabry, J. (2019). Graphical posterior predictive checks using the bayesplot package.
Gabry, J. (2020). loo reference manual, Version 2.4.1.
Gabry, J., & Goodrich, B. (2020). rstanarm: Bayesian applied regression modeling via stan [Manual].
Gabry, J., & Mahr, T. (2021). bayesplot: Plotting for Bayesian models.
Gabry, J., & Modrák, M. (2020). Visual MCMC diagnostics using the bayesplot package.
Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A. (2019). Visualization in Bayesian workflow. Journal of the Royal Statistical Society: Series A (Statistics in Society), 182(2), 389–402.
Galak, J., LeBoeuf, R. A., Nelson, L. D., & Simmons, J. P. (2012). Correcting the past: Failures to replicate psi. Journal of Personality and Social Psychology, 103(6), 933–948.
Garnier, S. (2021). viridis: Default color maps from ’matplotlib’ [Manual].
Gelman, A. (2015). The connection between varying treatment effects and the crisis of unreplicable research: A Bayesian perspective. Journal of Management, 41(2), 632–643.
Gelman, A., & Carlin, J. (2014). Beyond power calculations: Assessing type S (sign) and type M (magnitude) errors. Perspectives on Psychological Science, 9(6), 641–651.
Gelman, A., Goodrich, B., Gabry, J., & Vehtari, A. (2019). R-squared for Bayesian regression models. The American Statistician, 73(3), 307–309.
Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical models. Cambridge University Press.
Gelman, A., & Stern, H. (2006). The difference between “significant” and “not significant” is not itself statistically significant. The American Statistician, 60(4), 328–331.
Grantham, N. (2019). ggdark: Dark mode for ’ggplot2’ themes [Manual].
Grolemund, G., & Wickham, H. (2017). R for data science. O’Reilly.
Hamaker, E. L. (2012). Why researchers should think "within-person": A paradigmatic rationale. In Handbook of research methods for studying daily life (pp. 43–61). The Guilford Press.
Hayes, Andrew F. (2015). An index and test of linear moderated mediation. Multivariate Behavioral Research, 50(1), 1–22.
Hayes, Andrew F. (2005). Statistical methods for communication science. Routledge.
Hayes, Andrew F. (2018). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach (Second edition). The Guilford Press.
Hayes, Andrew F., Slater, M. D., & Snyder, L. B. (2008). The SAGE sourcebook of advanced data analysis methods for communication research.
Healy, K. (2018). Data visualization: A practical introduction. Princeton University Press.
Heyns, E. (2020). Better BibTeX for zotero.
Hocking, T. D. (2021). Directlabels: Direct labels for multicolor plots [Manual].
IBM Corporation. (2020). IBM SPSS Statistics for Windows.
Imai, K., Keele, L., & Tingley, D. (2010). A general approach to causal mediation analysis. Psychological Methods, 15(4), 309–334.
Jaccard, J., & Turrisi, R. (2003). Interaction effects in multiple regression (2nd edition). Sage Publications.
Kay, M. (2020a). Extracting and visualizing tidy draws from brms models.
Kay, M. (2020b). tidybayes: Tidy data and ’geoms’ for Bayesian models.
Kelley, K., & Preacher, K. J. (2012). On effect size. Psychological Methods, 17(2), 137.
Klein, R. A., Cook, C. L., Ebersole, C. R., Vitiello, C., Nosek, B. A., Chartier, C. R., Christopherson, C. D., Clay, S., Collisson, B., Crawford, J., Cromar, R., Vidamuerte, D., Gardiner, G., Gosnell, C., Grahe, J., Hall, C., Joy-Gaba, J., Legg, A. M., Levitan, C., … Ratliff, K. (2019). Many Labs 4: Failure to replicate mortality salience effect with and without original author involvement. PsyArXiv.
Kruschke, J. K. (2015). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Academic Press.
Kruschke, J. K., & Liddell, T. M. (2018). The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin & Review, 25(1), 178–206.
Kurz, A. S. (2021). Statistical rethinking with brms, ggplot2, and the tidyverse: Second Edition (version 0.2.0).
Kurz, A. S. (2020a). Doing Bayesian data analysis in brms and the tidyverse (version 0.4.0).
Kurz, A. S. (2020b). Statistical rethinking with brms, ggplot2, and the tidyverse (version 1.2.0).
Legler, J., & Roback, P. (2019). Broadening your statistical horizons: Generalized linear models and multilevel models.
Little, T. D., Preacher, K. J., Selig, J. P., & Card, N. A. (2007). New developments in latent variable panel analyses of longitudinal data. International Journal of Behavioral Development, 31(4), 357–365.
Lucas, T. (2016). palettetown: Use Pokemon inspired colour palettes [Manual].
Maxwell, S. E., & Cole, D. A. (2007). Bias in cross-sectional analyses of longitudinal mediation. Psychological Methods, 12(1), 23–44.
Maxwell, S. E., Cole, D. A., & Mitchell, M. A. (2011). Bias in cross-sectional analyses of longitudinal mediation: Partial and complete mediation under an autoregressive model. Multivariate Behavioral Research, 46(5), 816–841.
McCabe, C. J., Kim, D. S., & King, K. M. (2018). Improving present practices in the visual display of interactions. Advances in Methods and Practices in Psychological Science, 1(2), 147–165.
McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in R and Stan (Second Edition). CRC Press.
McElreath, R. (2015). Statistical rethinking: A Bayesian course with examples in R and Stan. CRC press.
Meredith, M., & Kruschke, J. (2018). HDInterval: Highest (posterior) density intervals [Manual].
Merkle, E. C., & Rosseel, Y. (2018). blavaan: Bayesian structural equation models via parameter expansion. Journal of Statistical Software, 85(4), 1–30.
Merkle, E. C., Rosseel, Y., & Goodrich, B. (2020). blavaan: Bayesian latent variable analysis.
Miočević, M., MacKinnon, D. P., & Levy, R. (2017). Power in Bayesian mediation analysis for small sample research. Structural Equation Modeling: A Multidisciplinary Journal, 24(5), 666–683.
Mitchell, M. A., & Maxwell, S. E. (2013). A comparison of the cross-sectional and sequential designs when assessing longitudinal mediation. Multivariate Behavioral Research, 48(3), 301–339.
Muthén, B., & Asparouhov, T. (2015). Causal effects in mediation modeling: An introduction with applications to latent variables. Structural Equation Modeling: A Multidisciplinary Journal, 22(1), 12–23.
Navarro, D. (2019). Learning statistics with R.
Nelson, L. D., Simmons, J., & Simonsohn, U. (2018). Psychology’s renaissance. Annual Review of Psychology, 69(1), 511–534.
Pashler, H., & Wagenmakers, E. (2012). Editors’ introduction to the special section on replicability in psychological science: A crisis of confidence? Perspectives on Psychological Science, 7(6), 528–530.
Peng, R. D. (2019). R programming for data science.
Peng, R. D., Kross, S., & Anderson, B. (2017). Mastering software development in {}R{}.
Preacher, K. J., & Kelley, K. (2011). Effect size measures for mediation models: Quantitative strategies for communicating indirect effects. Psychological Methods, 16(2), 93–115.
Preacher, K. J., Rucker, D. D., & Hayes, A. F. (2007). Addressing moderated mediation hypotheses: Theory, methods, and prescriptions. Multivariate Behavioral Research, 42(1), 185–227.
R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Revelle, W. (2021). psych: Procedures for psychological, psychometric, and personality research.
Ripley, B. (2019). MASS: Support functions and datasets for venables and ripley’s MASS.
Rogosa, D. (1980). Comparing nonparallel regression lines. Psychological Bulletin, 88(2), 307–321.
Rosseel, Y., & Jorgensen, T. D. (2019). lavaan: Latent variable analysis [Manual].
Roy Rosenzweig Center for History and New Media. (2020). Zotero.
SAS/IML software. (2020).
Selig, J. P., & Preacher, K. J. (2009). Mediation models for longitudinal data in developmental research. Research in Human Development, 6(2-3), 144–164.
Spiller, S. A., Fitzsimons, G. J., Lynch, J. G., & Mcclelland, G. H. (2013). Spotlights, floodlights, and the magic number zero: Simple effects tests in moderated regression. Journal of Marketing Research, 50(2), 277–288.
Stan Development Team. (2020). RStan: The R interface to Stan.
Stan Development Team. (2021). Stan user’s guide, Version 2.26.
Thoen, E. (2019). dutchmasters [Manual].
Torres-Manzanera, E. (n.d.). Xkcd: Plotting XKCD graphs. Journal of Statistical Software, 12.
Torres-Manzanera, E. (2018). Xkcd: Plotting ggplot2 graphics in an XKCD style.
Tufte, E. R. (2001). The visual display of quantitative information (Second Edition). Graphics Press.
Valente, M. J., & MacKinnon, D. P. (2017). Comparing models of change to estimate the mediated effect in the pretest-posttest control group design. Structural Equation Modeling : A Multidisciplinary Journal, 24(3), 428–450.
Valeri, L., & VanderWeele, T. J. (2013). Mediation analysis allowing for exposuremediator interactions and causal interpretation: Theoretical assumptions and implementation with SAS and SPSS macros. Psychological Methods, 18(2), 137.
van Buuren, S. (2018). Flexible imputation of missing data (Second Edition). CRC Press.
VanderWeele, T. (2015). Explanation in causal inference: Methods for mediation and interaction (1st edition). Oxford University Press.
Vehtari, A., & Gabry, J. (2020). Using the loo package (version \(>\)= 2.0.0).
Vehtari, A., & Gabry, J. (2019). Bayesian stacking and pseudo-BMA weights using the loo package.
Vehtari, A., Gabry, J., Magnusson, M., Yao, Y., & Gelman, A. (2019). loo: Efficient leave-one-out cross-validation and WAIC for bayesian models.
Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27(5), 1413–1432.
Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P.-C. (2019). Rank-normalization, folding, and localization: An improved \(\widehat R\) for assessing convergence of MCMC. arXiv Preprint arXiv:1903.08008.
Vermeer, J. (1657). The little street.
Vuorre, M. (2017). bmlm: Bayesian multilevel mediation [Manual].
Vuorre, M. (2019). bmlm: Bayesian multilevel mediation [Manual].
Vuorre, M., & Bolger, N. (2018). Within-subject mediation analysis for experimental data in cognitive psychology and neuroscience. Behavior Research Methods, 50(5), 2125–2143.
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York.
Wickham, H. (2019). tidyverse: Easily install and load the ’tidyverse’.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686.
Xie, Y. (2016). bookdown: Authoring books and technical documents with R markdown. Chapman and Hall/CRC.
Xie, Y. (2020). bookdown: Authoring books and technical documents with R Markdown.
Xie, Y., Allaire, J. J., & Grolemund, G. (2020). R markdown: The definitive guide. Chapman and Hall/CRC.
Yao, Y., Vehtari, A., Simpson, D., & Gelman, A. (2018). Using stacking to average Bayesian predictive distributions (with discussion). Bayesian Analysis, 13(3), 917–1007.
Yong, E. (2012). Replication studies: Bad copy. Nature News, 485(7398), 298.
Yuan, Y., & MacKinnon, D. P. (2009). Bayesian mediation analysis. Psychological Methods, 14(4), 301–322.