Abril-Pla O, Carroll C, Andreani V. 2023. PyMC: A Modern, and Comprehensive Probabilistic Programming Framework in Python.” PeerJ Computer Science 9 (e1516). https://doi.org/10.7717/peerj-cs.1516.
Allaire, JJ, Romain Francois, Kevin Ushey, Gregory Vandenbrouck, Marcus Geelnard, and Intel. 2023. RcppParallel: Parallel Programming Tools for Rcpp. https://CRAN.R-project.org/package=RcppParallel.
Bates, Douglas M., and Donald G. Watts. 1988. Nonlinear Regression Analysis and Its Applications. New York, NY: John Wiley & Sons. https://doi.org/10.1002/9780470316757.app2.
Bates, Douglas, and Dirk Eddelbuettel. 2013. “Fast and Elegant Numerical Linear Algebra Using the RcppEigen Package.” Journal of Statistical Software 52 (5): 1–24. https://doi.org/10.18637/jss.v052.i05.
Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. 2015. “Fitting Linear Mixed-Effects Models Using lme4.” Journal of Statistical Software 67 (1): 1–48. https://doi.org/10.18637/jss.v067.i01.
Bhadra, Anindya, Jyotishka Datta, Nicholas G. Polson, and Brandon Willard. 2019. Lasso Meets Horseshoe: A Survey.” Statistical Science 34 (3): 405–27. https://doi.org/10.1214/19-STS700.
Bivand, Roger. 2001. “More on Spatial Data Analysis.” R News 1 (3): 13–17. https://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf.
Blangiardo, Marta, Michela Cameletti, Gianluca Baio, and Håvard Rue. 2013. “Spatial and Spatio-Temporal Models with R-INLA.” Spatial and Spatio-Temporal Epidemiology 7 (December): 39–55. https://doi.org/10.1016/j.sste.2013.07.003.
Bradley Efron, Iain Johnstone, Trevor Hastie, and Robert Tibshirani. 2004. “Least Angle Regression.” Annals of Statistics 32 (2): 407–99. https://hastie.su.domains/Papers/LARS/LeastAngle_2002.pdf.
Breheny, Patrick, and Jian Huang. 2011. “Coordinate Descent Algorithms for Nonconvex Penalized Regression, with Applications to Biological Feature Selection.” Annals of Applied Statistics 5 (1): 232–53. https://doi.org/10.1214/10-AOAS388.
Bürkner, Paul-Christian. 2017. brms: An R Package for Bayesian Multilevel Models Using Stan.” Journal of Statistical Software 80 (1): 1–28. https://doi.org/10.18637/jss.v080.i01.
Cabral, Rafael, David Bolin, and Håvard Rue. 2022. “Controlling the Flexibility of Non-Gaussian Processes Through Shrinkage Priors.” Bayesian Analysis -1 (-1): 1–24. https://doi.org/10.1214/22-BA1342.
Carpenter, Bob, Andrew Gelman, Matthew Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. 2017. Stan: A Probabilistic Programming Language.” Journal of Statistical Software 76 (1): 1–32. https://doi.org/10.18637/jss.v076.i01.
Carpenter, Bob, Matthew D. Hoffman, Marcus Brubaker, Daniel Lee, Peter Li, and Michael Betancourt. 2015. “The Stan Math Library: Reverse-Mode Automatic Differentiation in c++.” https://arxiv.org/abs/1509.07164.
Christensen, O. F., and P. J. Ribeiro Jr. 2002. geoRglm: A Package for Generalised Linear Spatial Models.” R News 2 (2): 26–28.
Chung, Yeojin, Sophia Rabe-Hesketh, Vincent Dorie, Andrew Gelman, and Jingchen Liu. 2013. “A Nondegenerate Penalized Likelihood Estimator for Variance Parameters in Multilevel Models.” Psychometrika 78 (4): 685–709. https://doi.org/10.1007/s11336-013-9328-2.
Demidenko, Eugene. 2013. Mixed Models: Theory and Applications with R. 2nd ed. Hoboken, New Jersey: John Wiley & Sons. https://doi.org/10.1002/9781118651537.
Diggle, P. J., J. A. Tawn, and R. A. Moyeed. 1998. “Model-Based Geostatistics.” Journal of the Royal Statistical Society: Series C (Applied Statistics) 47 (3): 299–350. https://doi.org/10.1111/1467-9876.00113.
Donegan, Connor. 2022. geostan: An r Package for Bayesian Spatialanalysis.” Journal of Open Source Software 7 (79): 4716. https://doi.org/10.21105/joss.04716.
Eddelbuettel, Dirk, and James Joseph Balamuta. 2018. Extending R with C++: A Brief Introduction to Rcpp.” The American Statistician 72 (1): 28–36. https://doi.org/10.1080/00031305.2017.1375990.
Eddelbuettel, Dirk, John W. Emerson, and Michael J. Kane. 2023. BH: Boost c++ Header Files. https://CRAN.R-project.org/package=BH.
Eddelbuettel, Dirk, and Romain François. 2011. Rcpp: Seamless R and C++ Integration.” Journal of Statistical Software 40 (8): 1–18. https://doi.org/10.18637/jss.v040.i08.
Fisher, R. A. 1936. “The Use of Multiple Measurements in Taxonomic Problems.” Annals of Eugenics 7 (2): 179–88. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x.
Friedman, Jerome, Robert Tibshirani, and Trevor Hastie. 2010. “Regularization Paths for Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software 33 (1): 1–22. https://doi.org/10.18637/jss.v033.i01.
Gabry, Jonah, Rok Češnovar, and Andrew Johnson. 2023. cmdstanr: R Interface to CmdStan. https://mc-stan.org/cmdstanr/.
Gabry, Jonah, Daniel Simpson, Aki Vehtari, Michael Betancourt, and Andrew Gelman. 2019. “Visualization in Bayesian Workflow.” Journal of the Royal Statistical Society Series A: Statistics in Society 182: 389–402. https://doi.org/10.1111/rssa.12378.
Gałecki, Andrzej, and Tomasz Burzykowski. 2013. Linear Mixed-Effects Models Using R: A Step-by-Step Approach. 1st ed. New York, NY: Springer New York. https://doi.org/10.1007/978-1-4614-3900-4.
Gelfand, Alan E., Susan E. Hills, Amy Racine-Poon, and Adrian F. M. Smith. 1990. “Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling.” Journal of the American Statistical Association 85 (412): 972–85. https://doi.org/10.2307/2289594.
Gelman, Andrew, Daniel Lee, and Jiqiang Guo. 2015. “Stan: A Probabilistic Programming Language for Bayesian Inference and Optimization.” Journal of Educational and Behavioral Statistics 40 (5): 530–43. https://doi.org/10.3102/1076998615606113.
Gómez-Rubio, Virgilio. 2020. Bayesian Inference with INLA. Boca Raton, Florida: Chapman; Hall/CRC. https://becarioprecario.bitbucket.io/inla-gitbook/.
Goodrich, Ben, Jonah Gabry, Imad Ali, and Sam Brilleman. 2023. rstanarm: Bayesian Applied Regression Modeling via Stan.” https://mc-stan.org/rstanarm/.
Hadfield, Jarrod D. 2010. MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package.” Journal of Statistical Software 33 (2): 1–22. https://www.jstatsoft.org/v33/i02/.
Hahsler, Michael, Matthew Piekenbrock, and Derek Doran. 2019. dbscan: Fast Density-Based Clustering with R.” Journal of Statistical Software 91 (1): 1–30. https://doi.org/10.18637/jss.v091.i01.
Hoaglin, David C., and Roy E. Welsch. 1978. “The Hat Matrix in Regression and ANOVA.” The American Statistician 32 (1): 17–22. https://www.jstor.org/stable/2683469.
Jiang, Jiming, and Thuan Nguyen. 2021. Linear and Generalized Linear Mixed Models and Their Applications. 2nd ed. New York, NY: Springer New York. https://doi.org/10.1007/978-1-0716-1282-8.
Joshua V. Dillon, Dustin Tran, Ian Langmore. 2017. TensorFlow Distributions.” https://arxiv.org/abs/1711.10604.
Karatzoglou, Alexandros, Alex Smola, Kurt Hornik, and Achim Zeileis. 2004. kernlab: An S4 Package for Kernel Methods in R.” Journal of Statistical Software 11 (9): 1–20. https://doi.org/10.18637/jss.v011.i09.
Kaufman, Leonard, and Peter J. Rousseeuw. 1990. Finding Groups in Data: An Introduction to Cluster Analysis. 1st ed. Wiley Series in Probability and Statistics. Wiley. https://doi.org/10.1002/9780470316801.
Meyer, David, Evgenia Dimitriadou, Kurt Hornik, Andreas Weingessel, and Friedrich Leisch. 2023. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. https://CRAN.R-project.org/package=e1071.
Moraga, Paula. 2020. Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny. Boca Raton, Florida: Chapman; Hall/CRC. https://www.paulamoraga.com/book-geospatial/.
Morris, Mitzi, Katherine Wheeler-Martin, Dan Simpson, Stephen J. Mooney, Andrew Gelman, and Charles DiMaggio. 2019. “Bayesian Hierarchical Spatial Models: Implementing the Besag York Mollié Model in Stan.” Spatial and Spatio-Temporal Epidemiology 31 (November): 100301. https://doi.org/10.1016/j.sste.2019.100301.
Murphy, Kevin P. 2022. Probabilistic Machine Learning: An Introduction. Cambridge, Massachusetts: MIT Press. https://probml.github.io/pml-book/book1.html.
Niyizibi, Bart, Wade Brorsen, and Eunchun Park. 2018. “Using Bayesian Kriging for Spatial Smoothing of Trends in the Means and Variances of Crop Yield Densities.” Economic Geography. https://doi.org/10.22004/ag.econ.274403.
Palmí-Perales, Francisco, Virgilio Gómez-Rubio, Roger S. Bivand, Michela Cameletti, and Håvard Rue. 2022. “Bayesian Inference for Multivariate Spatial Models with r-INLA.” The R Journal. https://doi.org/10.48550/arXiv.2212.10976.
Pebesma, Edzer. 2018. “Simple Features for R: Standardized Support for Spatial Vector Data.” The R Journal 10 (1): 439–46. https://doi.org/10.32614/RJ-2018-009.
———. 2022. stars: Spatiotemporal Arrays, Raster and Vector Data Cubes. https://CRAN.R-project.org/package=stars.
Peter Diggle, Kung-Yee Liang, Patrick Heagerty, and Scott Zeger. 2002. Analysis of Longitudinal Data. 2nd ed. Oxford: Oxford University Press.
Piironen, Juho, Markus Paasiniemi, and Aki Vehtari. 2020. “Projective Inference in High-Dimensional Problems: Prediction and Feature Selection.” Electronic Journal of Statistics 14 (1): 2155–97. https://doi.org/10.1214/20-EJS1711.
Piironen, Juho, and Aki Vehtari. 2017a. “Comparison of Bayesian Predictive Methods for Model Selection.” Statistics and Computing 27 (3): 711–35. https://doi.org/10.1007/s11222-016-9649-y.
———. 2017b. “Sparsity Information and Regularization in the Horseshoe and Other Shrinkage Priors.” Electronic Journal of Statistics 11 (2): 5018–51. https://doi.org/10.1214/17-EJS1337SI.
Pinheiro, JoséC., and Douglas M. Bates. 2000. Mixed-Effects Models in S and S-PLUS. New York, NY: Springer-Verlag.
Plummer, Martyn. 2021. rjags: Bayesian Graphical Models Using MCMC. https://CRAN.R-project.org/package=rjags.
Plummer, Martyn, Nicky Best, Kate Cowles, and Karen Vines. 2006. coda: Convergence Diagnosis and Output Analysis for MCMC.” R News 6 (1): 7–11. https://journal.r-project.org/archive/.
Rasmussen, Carl Edward, and Christopher K. I. Williams. 2006. Gaussian Processes for Machine Learning. Cambridge, Massachusetts: MIT Press. https://gaussianprocess.org/gpml/.
Rizopoulos, Dimitris. 2023. GLMMadaptive: Generalized Linear Mixed Models Using Adaptive Gaussian Quadrature. https://CRAN.R-project.org/package=GLMMadaptive.
Rönnegård, Lars, Xia Shen, and Moudud Alam. 2010. hglm: A Package for Fitting Hierarchical Generalized Linear Models.” The R Journal 2 (2): 20–28. https://doi.org/10.32614/RJ-2010-009.
Rosseel, Yves. 2012. lavaan: An R Package for Structural Equation Modeling.” Journal of Statistical Software 48 (2): 1–36. https://doi.org/10.18637/jss.v048.i02.
Rubin, Donald B. 1981. “Estimation in Parallel Randomized Experiments.” Journal of Educational Statistics 6 (4): 377–401. https://doi.org/10.3102/10769986006004377.
Rue, Håvard, Sara Martino, and Nicholas Chopin. 2009. “Approximate Bayesian Inference for Latent Gaussian Models Using Integrated Nested Laplace Approximations (with Discussion).” Journal of the Royal Statistical Society, Series B 71 (2): 319–92.
Sainsbury-Dale, Matthew, Andrew Zammit-Mangion, and Noel Cressie. 2022. “Modelling Big, Heterogeneous, Non-Gaussian Spatial and Spatio-Temporal Data Using FRK.” Journal of Statistical Software. https://doi.org/10.48550/arXiv.2110.02507.
Scrucca, Luca, Michael Fop, T. Brendan Murphy, and Adrian E. Raftery. 2016. mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models.” The R Journal 8 (1): 289–317. https://doi.org/10.32614/RJ-2016-021.
Sorensen, Tanner, Sven Hohenstein, and Shravan Vasishth. 2016. “Bayesian Linear Mixed Models Using Stan: A Tutorial for Psychologists, Linguists, and Cognitive Scientists.” The Quantitative Methods for Psychology 12 (3): 175–200. https://doi.org/10.20982/tqmp.12.3.p175.
Stan Development Team. 2023a. RStan: The R Interface to Stan.” https://mc-stan.org/.
———. 2023b. StanHeaders: Headers for the R Interface to Stan.” https://mc-stan.org/.
Tobler, Waldo. 1970. “A Computer Movie Simulating Urban Growth in the Detroit Region.” Economic Geography 46 (Supplement): 234–40. https://doi.org/10.2307/143141.
Vehtari, Aki, Andrew Gelman, and Jonah Gabry. 2017. “Practical Bayesian Model Evaluation Using Leave-One-Out Cross-Validation and WAIC.” Statistics and Computing 27: 1413–32. https://doi.org/10.1007/s11222-016-9696-4.
Vehtari, Aki, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian Bürkner. 2021. Rank-Normalization, Folding, and Localization: An Improved for Assessing Convergence of MCMC (with Discussion).” Bayesian Analysis 16 (2): 667–718. https://doi.org/10.1214/20-BA1221.
Wood, S. N. 2004. “Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models.” Journal of the American Statistical Association 99 (467): 673–86.
———. 2017. Generalized Additive Models: An Introduction with R. 2nd ed. Chapman; Hall/CRC. https://www.maths.ed.ac.uk/~swood34/igam/.
Wood, Simon N. 2019. “Simplified Integrated Nested Laplace Approximation.” Biometrika 107 (1): 223–30. https://doi.org/10.1093/biomet/asz044.
Wood, Simon N., Yannig Goude, and Simon Shaw. 2015. “Generalized Additive Models for Large Data Sets.” Journal of the Royal Statistical Society Series C: Applied Statistics 64 (1): 139–55. https://doi.org/10.1111/rssc.12068.
Wood, Simon N., Natalya Pya, and Benjamin Säfken. 2016. “Smoothing Parameter and Model Selection for General Smooth Models.” Journal of the American Statistical Association 111 (516): 1548–63. https://doi.org/10.1080/01621459.2016.1180986.
Zhu, Jin, Xueqin Wang, Liyuan Hu, Junhao Huang, Kangkang Jiang, Yanhang Zhang, Shiyun Lin, and Junxian Zhu. 2022. abess: A Fast Best Subset Selection Library in Python and R.” Journal of Machine Learning Research 23 (202): 1–7. https://www.jmlr.org/papers/v23/21-1060.html.
Zou, Hui. 2006. “The Adaptive Lasso and Its Oracle Properties.” Journal of the American Statistical Association 101 (476): 407–99. https://doi.org/10.1198/016214506000000735.
Zou, Hui, and Trevor Hastie. 2005. “Regularization and Variable Selection via the Elastic Net.” Journal of the Royal Statistical Society Series B: Statistical Methodology 67 (2): 301–20. https://doi.org/10.1111/j.1467-9868.2005.00503.x.