7 Matchup Analysis
7.1 Parametrization for sensors bands
7.1.1 Ag(440)
Characteristic | OLI | MSI | OLCI | |||
---|---|---|---|---|---|---|
Beta (95% CI)1 | p-value | Beta (95% CI)1 | p-value | Beta (95% CI)1 | p-value | |
a | 24 (20 to 29) | <0.001 | 20 (17 to 24) | <0.001 | 20 (17 to 24) | <0.001 |
b | 1.9 (1.8 to 2.1) | <0.001 | 1.8 (1.6 to 2.0) | <0.001 | 1.8 (1.6 to 1.9) | <0.001 |
1
CI = Confidence Interval
|
Characteristic | MODISA | MERIS | SeaWiFS | |||
---|---|---|---|---|---|---|
Beta (95% CI)1 | p-value | Beta (95% CI)1 | p-value | Beta (95% CI)1 | p-value | |
a | 18 (15 to 21) | <0.001 | 20 (17 to 23) | <0.001 | 18 (16 to 21) | <0.001 |
b | 1.7 (1.5 to 1.9) | <0.001 | 1.7 (1.6 to 1.9) | <0.001 | 1.7 (1.6 to 1.9) | <0.001 |
1
CI = Confidence Interval
|
Sensor | MedianAE | MeanAE | bias |
---|---|---|---|
OLI | 0.22 | 0.353 | 0.0648 |
MSI | 0.209 | 0.341 | 0.0562 |
OLCI | 0.219 | 0.34 | 0.047 |
MODISA | 0.239 | 0.346 | 0.0664 |
MERIS | 0.229 | 0.34 | 0.0492 |
SeaWiFS | 0.256 | 0.344 | 0.0475 |
7.2 SPM
7.2.1 SPM from Rrs
EGSL | ||||||
---|---|---|---|---|---|---|
Characteristic | OLI | MSI | OLCI | |||
Beta (95% CI)1 | p-value | Beta (95% CI)1 | p-value | Beta (95% CI)1 | p-value | |
a | 3.5 (1.9 to 6.1) | <0.001 | 3.7 (2.1 to 6.7) | <0.001 | 3.7 (2.0 to 6.5) | <0.001 |
b | 0.21 (0.12 to 0.29) | <0.001 | 0.22 (0.13 to 0.31) | <0.001 | 0.22 (0.13 to 0.30) | <0.001 |
1
CI = Confidence Interval
|
JB | ||||||
---|---|---|---|---|---|---|
Characteristic | OLI | MSI | OLCI | |||
Beta (95% CI)1 | p-value | Beta (95% CI)1 | p-value | Beta (95% CI)1 | p-value | |
a | 12 (8.2 to 19) | <0.001 | 13 (8.7 to 19) | <0.001 | 13 (8.7 to 19) | <0.001 |
b | 0.51 (0.43 to 0.60) | <0.001 | 0.52 (0.44 to 0.60) | <0.001 | 0.52 (0.44 to 0.60) | <0.001 |
1
CI = Confidence Interval
|
EGSL | ||||||
---|---|---|---|---|---|---|
Characteristic | MODISA | MERIS | SeaWiFS | |||
Beta (95% CI)1 | p-value | Beta (95% CI)1 | p-value | Beta (95% CI)1 | p-value | |
a | 3.7 (2.1 to 6.6) | <0.001 | 3.7 (2.0 to 6.5) | <0.001 | 3.9 (2.1 to 7.0) | <0.001 |
b | 0.22 (0.13 to 0.30) | <0.001 | 0.21 (0.13 to 0.30) | <0.001 | 0.22 (0.13 to 0.31) | <0.001 |
1
CI = Confidence Interval
|
JB | ||||||
---|---|---|---|---|---|---|
Characteristic | MODISA | MERIS | SeaWiFS | |||
Beta (95% CI)1 | p-value | Beta (95% CI)1 | p-value | Beta (95% CI)1 | p-value | |
a | 13 (8.8 to 19) | <0.001 | 13 (8.7 to 19) | <0.001 | 13 (8.9 to 20) | <0.001 |
b | 0.52 (0.44 to 0.60) | <0.001 | 0.52 (0.44 to 0.60) | <0.001 | 0.52 (0.44 to 0.60) | <0.001 |
1
CI = Confidence Interval
|
Region | Sensor | MedianAE | MeanAE | bias |
---|---|---|---|---|
EGSL | OLI | 1.83 | 3.47 | 0.541 |
EGSL | MSI | 1.8 | 3.4 | 0.494 |
EGSL | OLCI | 1.79 | 3.41 | 0.51 |
EGSL | MODISA | 1.8 | 3.4 | 0.499 |
EGSL | MERIS | 1.79 | 3.42 | 0.514 |
EGSL | SeaWiFS | 1.78 | 3.38 | 0.494 |
JB | OLI | 0.841 | 3.68 | 0.323 |
JB | MSI | 0.806 | 3.52 | 0.299 |
JB | OLCI | 0.825 | 3.47 | 0.297 |
JB | MODISA | 0.824 | 3.46 | 0.296 |
JB | MERIS | 0.825 | 3.48 | 0.298 |
JB | SeaWiFS | 0.816 | 3.45 | 0.292 |
–> –> –> –> –> –> –> –> –> –>
7.3 Matchups analysis
Matchup analysis is performed for OLI and MSI images of Sept-Îles bay. Coefficient derived specifically for sensors are used. Four Atmospheric correction algorithm are compared in order to find the most appropriate, based on errors metrics: 1. ACOLITE 2. SSP 3. iCOR 4. C2RCC
7.3.1 Matchup summary statistics
Global summary | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Characteristic | Overall, N = 1181 | 2015-06-09, N = 1 | 2015-10-24, N = 1 | 2016-08-23, N = 9 | 2017-05-22, N = 5 | 2017-06-06, N = 6 | 2017-06-07, N = 5 | 2017-06-23, N = 2 | 2017-09-14, N = 9 | 2018-08-06, N = 2 | 2018-08-13, N = 5 | 2018-08-18, N = 4 | 2019-06-01, N = 2 | 2019-06-04, N = 5 | 2019-07-07, N = 7 | 2019-07-09, N = 7 | 2019-07-14, N = 8 | 2019-07-17, N = 1 | 2019-07-24, N = 6 | 2019-07-27, N = 7 | 2019-07-29, N = 5 | 2019-08-08, N = 3 | 2019-08-18, N = 10 | 2019-08-21, N = 8 |
ID, Range | 1 - 504 | 227 - 227 | 243 - 243 | 1 - 9 | 59 - 64 | 73 - 83 | 87 - 93 | 113 - 115 | 151 - 159 | 358 - 359 | 380 - 385 | 402 - 405 | 177 - 178 | 196 - 200 | 433 - 439 | 440 - 446 | 448 - 456 | 470 - 470 | 481 - 486 | 490 - 496 | 497 - 501 | 502 - 504 | 252 - 278 | 313 - 320 |
1
Range
|
Global summary | ||||||
---|---|---|---|---|---|---|
Characteristic | ACOLITE, N = 44 | C2RCC, N = 44 | C2X, N = 44 | iCOR, N = 44 | SeaDAS, N = 44 | SSP, N = 33 |
Sensor, n (%) | ||||||
MSI | 27 (61) | 27 (61) | 27 (61) | 27 (61) | 27 (61) | 27 (82) |
OLI | 17 (39) | 17 (39) | 17 (39) | 17 (39) | 17 (39) | 6 (18) |
Date, n (%) | ||||||
2016-08-23 | 13 (30) | 13 (30) | 13 (30) | 13 (30) | 13 (30) | 13 (39) |
2017-05-22 | 5 (11) | 5 (11) | 5 (11) | 5 (11) | 5 (11) | 0 (0) |
2017-06-06 | 3 (6.8) | 3 (6.8) | 3 (6.8) | 3 (6.8) | 3 (6.8) | 3 (9.1) |
2017-06-07 | 4 (9.1) | 4 (9.1) | 4 (9.1) | 4 (9.1) | 4 (9.1) | 0 (0) |
2017-09-14 | 8 (18) | 8 (18) | 8 (18) | 8 (18) | 8 (18) | 8 (24) |
2019-06-04 | 3 (6.8) | 3 (6.8) | 3 (6.8) | 3 (6.8) | 3 (6.8) | 3 (9.1) |
2019-07-07 | 3 (6.8) | 3 (6.8) | 3 (6.8) | 3 (6.8) | 3 (6.8) | 3 (9.1) |
2019-07-14 | 5 (11) | 5 (11) | 5 (11) | 5 (11) | 5 (11) | 3 (9.1) |
Project, n (%) | ||||||
CHONe | 36 (82) | 36 (82) | 36 (82) | 36 (82) | 36 (82) | 27 (82) |
CoastJB | 8 (18) | 8 (18) | 8 (18) | 8 (18) | 8 (18) | 6 (18) |
atmcor | Nobs | MeanAE | MedAE | bias | wins |
---|---|---|---|---|---|
ACOLITE | 44 | 4.0 | 3.1 | 3.10 | 5.3 |
C2RCC | 44 | 2.5 | 1.9 | 0.81 | 40.0 |
C2X | 44 | 2.4 | 1.9 | 1.20 | 31.0 |
iCOR | 44 | 4.1 | 2.9 | 2.90 | 11.0 |
SeaDAS | 44 | 4.2 | 2.9 | 2.90 | 11.0 |
SSP | 33 | 5.4 | 4.5 | 4.50 | 1.8 |
atmcor | r2 | slope |
---|---|---|
ACOLITE | 0.082 | 1.30 |
SSP | 0.130 | 2.70 |
SeaDAS | 0.120 | 3.30 |
iCOR | 0.230 | 2.10 |
C2RCC | 0.370 | 0.41 |
C2X | 0.510 | 0.43 |
atmcor | Nobs | MeanAE | MedAE | bias | wins |
---|---|---|---|---|---|
ACOLITE | 44 | 0.525 | 0.324 | -0.0188 | 23.30 |
C2RCC | 44 | 0.774 | 0.697 | -0.1880 | 20.00 |
C2X | 44 | 0.892 | 0.790 | -0.3300 | 6.67 |
iCOR | 44 | 0.564 | 0.392 | 0.1480 | 16.70 |
SeaDAS | 44 | 0.540 | 0.355 | 0.0329 | 20.00 |
SSP | 33 | 0.595 | 0.459 | 0.1780 | 13.30 |
atmcor | r2 | slope |
---|---|---|
ACOLITE | 0.76 | 0.57 |
SSP | 0.53 | 0.52 |
SeaDAS | 0.61 | 0.62 |
iCOR | 0.62 | 0.73 |
C2RCC | 0.36 | 0.93 |
C2X | 0.23 | 0.67 |
atmcor | Nobs | MeanAE | MedAE | bias | wins |
---|---|---|---|---|---|
ACOLITE | 44 | 1.330 | 1.050 | -1.050 | 0.00 |
C2RCC | 44 | 1.100 | 0.939 | -0.939 | 10.70 |
C2X | 44 | 0.911 | 0.834 | -0.337 | 53.60 |
iCOR | 44 | 1.330 | 1.100 | -1.100 | 0.00 |
SeaDAS | 44 | 1.210 | 0.937 | -0.564 | 25.00 |
SSP | 33 | 0.962 | 0.563 | -0.393 | 7.14 |
atmcor | r2 | slope |
---|---|---|
ACOLITE | 0.2300 | 0.160 |
SSP | 0.0150 | 0.056 |
SeaDAS | 0.0061 | 0.180 |
iCOR | 0.4600 | 0.110 |
C2RCC | 0.1800 | 0.220 |
C2X | 0.2500 | 0.730 |
atmcor | Nobs | MeanAE | MedAE | bias | wins |
---|---|---|---|---|---|
ACOLITE | 44 | 4.8 | 4.4 | 4.10 | 14 |
C2RCC | 44 | 3.5 | 2.8 | 0.92 | 14 |
C2X | 44 | 3.7 | 2.9 | 1.50 | 45 |
iCOR | 44 | 4.7 | 4.3 | 4.00 | 17 |
SeaDAS | 44 | 5.6 | 5.1 | 4.90 | 10 |
SSP | 33 | 6.8 | 7.7 | 6.90 | 0 |
atmcor | r2 | slope |
---|---|---|
ACOLITE | 0.43 | 0.33 |
SSP | 0.51 | 0.64 |
SeaDAS | 0.40 | 0.71 |
iCOR | 0.46 | 0.65 |
C2RCC | 0.33 | 0.30 |
C2X | 0.25 | 0.25 |
atmcor | Nobs | MeanAE | MedAE | bias | wins |
---|---|---|---|---|---|
ACOLITE | 44 | 0.064 | 0.0470 | 0.0470 | 0.0 |
C2RCC | 44 | 0.022 | 0.0095 | -0.0023 | 50.0 |
C2X | 44 | 0.024 | 0.0120 | -0.0038 | 28.0 |
iCOR | 44 | 0.093 | 0.0350 | 0.0350 | 17.0 |
SeaDAS | 44 | 0.110 | 0.0370 | 0.0370 | 5.6 |
SSP | 33 | 0.150 | 0.0560 | 0.0560 | 0.0 |
atmcor | r2 | slope |
---|---|---|
ACOLITE | 0.46 | 5.7 |
SSP | 0.15 | 23.0 |
SeaDAS | 0.21 | 19.0 |
iCOR | 0.48 | 14.0 |
C2RCC | 0.55 | 4.0 |
C2X | 0.58 | 3.6 |