6  scale setting

no bounding has been applied

f_\pi^j(\xi, \infty) =\frac{f_\pi^j(\xi, L) }{1-\Delta_{FVE}} \Delta_{FVE} = - 2 \xi_\ell ~ \widetilde{g}_1(\lambda) \\ \widetilde{g}_1(\lambda) \simeq 4 \sqrt{\frac{\pi}{2}} \sum_{n=1}^\infty \frac{m(n)}{(\sqrt{n} \lambda)^{3/2}} e^{- \sqrt{n} \lambda} \\ \xi_\pi \equiv \frac{M_\pi^2}{(4 \pi f_\pi)^2} with m(n) the multiplicities of a three-dimensional vector \vec{n} having integer norm n (i.e.~m(n) = \{6, 12, 8, 6, ...\}) and \lambda=M_\pi L. To obtain the above formula we expand K_1, the Bessel function of the second kind, by its asymptotic expansion.
Different choices of the expansion variable are possible: one can replace f_\pi with the LO LEC f and/or replace M_\pi^2 with 2 B m_\ell (and correspondingly M_\pi L with \sqrt{2 B m_\ell} L in the arguments of the functions \widetilde{g}_1 and \widetilde{g}_2). At NLO (i.e., for the GL formula) the above changes are equivalent, since any difference represents a NNLO effect.

af_\pi^j(\xi) = af_\pi^j(\xi^{phys}) \left\{1-2\xi\log(\xi/\xi^{phys})+ [P+P_{disc} (af_\pi^j(\xi^{phys}))^2] (\xi-\xi^{phys})\right\}

P[0]=a(A) \text{fm}\\ P[1]=a(B) \text{fm}\\ P[2]=a(C) \text{fm}\\ P[3]=a(D) \text{fm}\\ P[4]=a(E) \text{fm}

\chi^2/dof= 2.43586

P value
P[0] 0.09142(42)
P[1] 0.079473(46)
P[2] 0.068101(59)
P[3] 0.056821(66)
P[4] 0.048862(66)
P[5] -8.93(72)
P[6] -445(269)

<r >

6.1 scaling with tau paper

<r >

6.2 max twist corrections

par value no_max_twist
P[0] 0.09133(42) 0.09142(42)
P[1] 0.079478(46) 0.079473(46)
P[2] 0.068187(68) 0.068101(59)
P[3] 0.056825(66) 0.056821(66)
P[4] 0.048899(66) 0.048862(66)
P[5] -8.67(73) -8.93(72)
P[6] -534(273) -445(269)

<r >

6.3 scaling with tau paper

<r >

6.4 Only phys point ensembles

\chi^2/dof= 0.377803

P value
P[0] 0.07941(11)
P[1] 0.068096(87)
P[2] 0.056843(61)
P[3] 0.048881(66)
P[4] -1.3(3.0)
P[5] -3387(2016)

<r >

<r >

6.5 No C20

\chi^2/dof= 0.854531

P value
P[0] 0.09018(63)
P[1] 0.079492(46)
P[2] 0.068095(58)
P[3] 0.056848(66)
P[4] 0.048878(66)
P[5] -5.3(1.7)
P[6] -1703(628)

<r >

6.6 scaling with tau paper

<r >

6.7 max twist corrections with A12

\chi^2/dof= 2.07209

x
|P |value |
|:—-|:————|
|P[0] |0.09128(40) |
|P[1] |0.079478(46) |
|P[2] |0.068188(68) |
|P[3] |0.056826(65) |
|P[4] |0.048900(66) |
|P[5] |-8.60(71) |
|P[6] |-563(265) |
<r >

<r >

6.8 max twist corrections with A12 no C20

\chi^2/dof= 0.802867

P value
P[0] 0.09021(58)
P[1] 0.079497(47)
P[2] 0.068176(67)
P[3] 0.056850(66)
P[4] 0.048914(65)
P[5] -5.4(1.6)
P[6] -1689(589)
<r >

<r >

6.9 max twist corrections with A12 no C20 + strange misstuning as error

par value percent
P[0] 0.09135(37) 0.0040684
P[1] 0.07944(11) 0.0014365
P[2] 0.06818(14) 0.0021009
P[3] 0.056846(80) 0.0014004
P[4] 0.04890(11) 0.0022075
P[5] -8.82(21) -0.0239281
P[6] -499.98(48) -0.0009575
<r >

<r >

6.10 max twist corrections with A12 no C20 + strange misstuning as error, unitary (main)

\chi^2/dof= 0.44991

X1            X2           X3

3 P[0] 9.025081e-02 7.890561e-04 4 P[1] 7.947758e-02 1.081341e-04 5 P[2] 6.818945e-02 1.429821e-04 6 P[3] 5.685040e-02 9.017466e-05 7 P[4] 4.891721e-02 1.065579e-04 8 P[5] -5.701487e+00 2.227514e+00 9 P[6] -1.592353e+03 7.812041e+02

par value percent
P[0] 0.09025(79) 0.0087429
P[1] 0.07948(11) 0.0013606
P[2] 0.06819(14) 0.0020968
P[3] 0.056850(90) 0.0015862
P[4] 0.04892(11) 0.0021783
P[5] -5.7(2.2) -0.3906901
P[6] -1592(781) -0.4905972
<r >

<r >

6.11 only phys point + strange misstuning as error

X1            X2           X3

3 P[0] 7.942148e-02 1.612413e-04 4 P[1] 6.818519e-02 1.503716e-04 5 P[2] 5.684570e-02 7.811211e-05 6 P[3] 4.891968e-02 1.068468e-04 7 P[4] -1.997571e+00 3.772238e+00 8 P[5] -2.839772e+03 2.523184e+03

par value percent
P[0] 0.07942(16) 0.0020302
P[1] 0.06819(15) 0.0022053
P[2] 0.056846(78) 0.0013741
P[3] 0.04892(11) 0.0021841
P[4] -2.0(3.8) -1.8884127
P[5] -2840(2523) -0.8885165
<r >

<r >

6.12 only phys + max twist corrections + strange misstuning

\chi^2/dof= 0.343828

P value
P[0] 0.07954(11)
P[1] 0.068014(98)
P[2] 0.056890(62)
P[3] 0.048997(67)
P[4] -1.4(2.7)
P[5] -3265(1844)
<r >

<r >