18 blinded continuum
the different bounding are:
Above
c(t>t_c)< c(t_c) e^{-E_{2\pi} (t-t_c)}
c(t>t_c)< c(t_c) e^{-M_{eff} (t-t_c)} where M_{eff} is the plateau value of m_{eff}(t) of the correlator VKVK.
below
c(t>t_c) > 0
c(t>t_c)< c(t_c) e^{-m_{eff}(t_m) (t-t_c)}, where t_m=t_c for t_c<t_e while t_m=t_e for t_c\geq t_e and t_e is some time slice
19 c(t)>0 bound: above 1) and below 1) (BMW)
3 params fit
\chi^2/dof= 1.38911
P | value |
---|---|
P[0] | 6.92(11)e-8 |
P[1] | 2.0(2.0)e-7 |
P[2] | -6.6(2.0)e-7 |
5 params fit
\chi^2/dof= 3.59549
P | value |
---|---|
P[0] | 7.04(54)e-8 |
P[1] | -4(23)e-7 |
P[2] | -1.1(2.3)e-6 |
P[3] | 8(23)e-5 |
P[4] | 4(24)e-5 |
<r >
20 m_{eff}(t) bound: above 1) and below 2) (Tov or RBC/UKQCD)
\chi^2/dof= 1.15772
P | value |
---|---|
P[0] | 6.89(10)e-8 |
P[1] | 3.0(1.9)e-7 |
P[2] | -5.9(1.9)e-7 |
<r >
21 M_{eff} bound: above 2) and below 2)
\chi^2/dof= 3.41275
P | value |
---|---|
P[0] | 6.918(79)e-8 |
P[1] | 1.6(1.6)e-7 |
P[2] | -5.8(1.5)e-7 |
<r >
21.1 All data from different bounds
<r >
21.2 fitting (OS+TM)/2
P[0] is the value of the continuum limit, fit function: P[0]+P[1]a^2
amu_ave_bound_a2 \chi^2/dof= 0.141149
P | value |
---|---|
P[0] | 6.91(11)e-8 |
P[1] | -1.9(2.0)e-7 |
amu_ave_bound_meff_t_a2 \chi^2/dof= 0.26858
P | value |
---|---|
P[0] | 6.93(11)e-8 |
P[1] | -1.7(1.9)e-7 |
amu_ave_bound_meff_a2 \chi^2/dof= 1.78302
P | value |
---|---|
P[0] | 6.844(81)e-8 |
P[1] | -4(16)e-8 |
click on the legend to remove a data set
<r >
21.3 tree level lattice artefact subtraction
3 params fit
\chi^2/dof= 1.42685
P | value |
---|---|
P[0] | 6.93(11)e-8 |
P[1] | 1.0(2.0)e-7 |
P[2] | -8.0(1.9)e-7 |
<r >