1  M_\pi

Mpi-cA.12.48 = 0.08029(15) , \chi^2/dof= 0.92164

0.08028579 0.0001535833
Mpi-cB.72.64 = 0.056566(43) , \chi^2/dof= 0.0099863

0.05656583 4.271331e-05
Mpi-cB.72.96 = 0.056534(15) , \chi^2/dof= 0.01935

0.05653413 1.460993e-05
Mpi-cC.06.80 = 0.047227(34) , \chi^2/dof= 0.12123

0.04722655 3.352617e-05
Mpi-cD.54.96 = 0.040621(30) , \chi^2/dof= 0.055095

0.04062079 2.978815e-05
Mpi-cE.44.11 = 0.033830(29) , \chi^2/dof= 0.39457

0.0338297 2.881185e-05
Mpi-cC.20.48 = 0.08551(12) , \chi^2/dof= 1.0171

0.0855104 0.0001193227

<r >

1.1 Mpi fit (only as test)

to determine a\mu_\ell we fit \frac{M_\pi^2}{f_\pi^2}= 2 \left(\frac{aB}{a^2f_\pi^2}\right) a\mu_\ell \left[1+5\xi\log \xi +P\xi \right] where left hand site is a function of the variable a\mu_\ell and \left(\frac{aB}{a^2f_\pi^2}\right) is a fit parameter for each lattice spacing and P a global parameter for all lattices. We define \xi=2\left(\frac{aB}{a^2f_\pi^2}\right) a\mu_\ell. After the fit we solve for a\mu_\ell imposing the physical value of the ratio \frac{M_\pi^2}{f_\pi^2}\bigg|_{phys}

\chi^2/dof= 2.16335

P value
P[0] 892.1(1.5)
P[1] 1018.4(2.3)
P[2] 1203.4(3.5)
P[3] 1384.7(4.9)
P[4] 1.210(81)

<r >

Ens. a\mu_\ell
B 0.0006675(23)
C 0.0005847(23)
D 0.0004948(22)
E 0.0004301(21)

1.2 Mpi fit only physical point (test)

\chi^2/dof= 0.472663

P value
P[0] 940(19)
P[1] 1067(21)
P[2] 1267(24)
P[3] 1453(26)
P[4] 6.0(1.8)

<r >

Ens. a\mu_\ell a\mu_\ell(phys point only)
B 0.0006675(23) 0.0006650(26)
C 0.0005847(23) 0.0005860(25)
D 0.0004948(22) 0.0004936(22)
E 0.0004301(21) 0.0004303(22)

1.2.1 adding A ensemble (only as test)

\chi^2/dof= 4.64378

P value
P[0] 812.1(6.2)
P[1] 889.0(1.4)
P[2] 1015.9(2.2)
P[3] 1200.7(3.4)
P[4] 1381.6(4.9)
P[5] 1.448(70)

<r >

Ens. a\mu_\ell
A 0.0007317(57)
B 0.0006684(23)
C 0.0005849(23)
D 0.0004949(22)
E 0.0004301(21)

1.3 a2 term C20.48 no A12.48

adding an extra parameter \frac{M_\pi^2}{f_\pi^2}= 2 \left(\frac{aB}{a^2f_\pi^2}\right) a\mu_\ell \left[1+5\xi\log \xi +P\xi +P_1 a^2 \right]

\chi^2/dof= 0.753925

P value
P[0] 713(30)
P[1] 830(25)
P[2] 976(21)
P[3] 1183(18)
P[4] 1382(15)
P[5] 6.55(38)
P[6] 15.0(4.5)

<r >

Ens. a\mu_\ell a\mu_\ell-no-max-tw
A 0.0007483(59) 0.0007499(60)
B 0.0006667(23) 0.0006667(23)
C 0.0005860(25) 0.0005842(23)
D 0.0004940(23) 0.0004944(23)
E 0.0004305(22) 0.0004298(22)

1.4 A12.48 no C20.48

\chi^2/dof= 0.869561

P value
P[0] 714(30)
P[1] 826(27)
P[2] 968(23)
P[3] 1180(19)
P[4] 1377(16)
P[5] 6.46(44)
P[6] 15.8(4.9)

<r >

1.5 A12.48 no C20.48 + strange misstuning

\chi^2/dof= 10728.9

P value
P[0] 683.2(5.5)
P[1] 801.9(4.1)
P[2] 946.7(6.0)
P[3] 1163.7(4.4)
P[4] 1363.8(5.7)
P[5] 6.00(25)
P[6] 20.68(98)

<r >

1.6 A12.48 no C20.48 + strange misstuning, unitary (used for a\mu_\ell determination)

\chi^2/dof= 0.407355

P value
P[0] 686.2(7.7)
P[1] 801.1(5.7)
P[2] 947.3(6.1)
P[3] 1165.3(4.5)
P[4] 1363.1(8.1)
P[5] 6.06(28)
P[6] 20.5(1.3)

<r >

Ens. a\mu_\ell
A 0.0007479(99)
B 0.0006670(27)
C 0.0005862(42)
D 0.0004931(28)
E 0.0004305(31)

1.6.1 reweighting

\chi^2/dof= 0.0950052

P value
P[0] 0.174(58)
P[1] 0.085(26)
P[2] 0.101(15)
P[3] 0.156(20)
P[4] 2600(105)
P[5] -1.98(29)e+5

<r >

Ens. a\mu_\ell
A 0.0007461(58)
B 0.0006666(23)
C 0.0005862(25)
D 0.0004940(23)
E 0.0004305(22)