Chapter 14 Prendre en compte l’interaction
14.1 Avec le sport
<- cmest(
exp1 data = base3, # base
model = "gformula", # approach, defaut is rb (regression-based)
# if postc is not empty only gformula or msm
estimation = "imputation", # method of estimation. "imputation" is conterfactual estimation
inference = "bootstrap", # method for se and CI
nboot = 100, # defaut is 200
EMint = TRUE, # interaction exposure mediator
multimp = TRUE, # imputation multiple des DM
m = 10,
outcome = "t8_SBP",
exposure = "t0_baby_sex",
mediator = c("t4_act_sport"),
basec = c("t0_mother_scol_crt",
"t0_fathers_csp_defav"),# confusion baseline
postc = c("t4_litteraciepbm",
"t4_numeraciepbm",
"t4_act_read",
"t4_O_level",
"t4_hadchildren",
"t4_married",
"t4_act_friend",
"t4_religious"), # confusion intermédiaire
yreg = "linear", # outcome regression model
a = "Homme", # "active" value of exposure
astar = "Femme", # "control" value of exposure
mreg = list("logistic"), # regression model for each mediator
mval = list("Non"), # ref for M
postcreg = list("logistic",
"logistic",
"logistic",
"logistic",
"logistic",
"logistic",
"logistic",
"logistic") # ref for M
set.seed(28062022) ) ;
On peut décrire plusieurs effets :
- l’effet direct (qui ne passe pas par l’activité physique) “moyen” d’être né homme est CDE = +14.78mmHg (95CI = [11.34 to 19.56]
- il y a interaction avec le sport de : Int_Ref = -1.28mmHg (95CI = [-2.8 to 0.09]. Le fait de faire du sport change l’effet direct (chemins non en lien avec le sport) chez les hommes par rapport aux femmes.
- la proportion médiée “moyenne” est PM = -26.78% (95CI = [-55.15% to -14.29%`]
- L’effet du n’est pas le meme entre les hommes et les femmes : chez les hommes le fait de faire du sport diminue la TAS de Int_MEd = -1.59mmHg (95CI = [-3.51 to 0.13] de plus que chez les hommes.
14.2 Avec la lecture
<- cmest(
exp1 data = base3, # base
model = "gformula", # approach, defaut is rb (regression-based)
# if postc is not empty only gformula or msm
estimation = "imputation", # method of estimation. "imputation" is conterfactual estimation
inference = "bootstrap", # method for se and CI
nboot = 100, # defaut is 200
EMint = TRUE, # interaction exposure mediator
multimp = TRUE, # imputation multiple des DM
m = 10,
outcome = "t8_SBP",
exposure = "t0_baby_sex",
mediator = c("t4_act_read"),
basec = c("t0_mother_scol_crt",
"t0_fathers_csp_defav"),# confusion baseline
postc = c("t4_litteraciepbm",
"t4_O_level",
"t4_hadchildren",
"t4_married"), # confusion intermédiaire
yreg = "linear", # outcome regression model
a = "Homme", # "active" value of exposure
astar = "Femme", # "control" value of exposure
mreg = list("logistic"), # regression model for each mediator
mval = list("Oui"), # ref for M
postcreg = list("logistic",
"logistic",
"logistic",
"logistic") # ref for M
set.seed(28062022) ) ;
On peut décrire plusieurs effets :
- l’effet direct (qui ne passe pas par l’activité de lecture) “moyen” d’être né homme est CDE = +9.49mmHg (95CI = [6.7 to 12.84]
- il ne semble pas y avoir d’interaction avec la lecture de : Int_Ref = +0.48mmHg (95CI = [-0.38 to 1.86].
- la proportion médiée “moyenne” est PM = 6.84% (95CI = [-0.31 to 15.87]
- l’effet de la lecture semble a peu près similaire chez les hommes et les femmes Int_Med = +0.39mmHg (95CI = [-0.25 to 1.25]