• Physical Processes in Ecosystems
  • Foreward
  • 1 Calculus-Integration
    • 1.1 Preface
    • 1.2 Introduction
    • 1.3 Fundamentals
    • 1.4 The Definite Integral
      • 1.4.1 Area Under the Curve
      • 1.4.2 Improper Integrals
    • 1.5 Methods Of Integration
      • 1.5.1 Substitution
      • 1.5.2 Integration by Parts
      • 1.5.3 Partial Fractions
    • 1.6 Applications Of Definite Integrals
      • 1.6.1 Accumulation of Changes in the Function
      • 1.6.2 Average Change
      • 1.6.3 Distance
      • 1.6.4 Volumes
      • 1.6.5 Surface Area of Revolution
      • 1.6.6 Volume of Revolution
      • 1.6.7 General Surface Areas
      • 1.6.8 Error Estimation
    • 1.7 Differential Equations
      • 1.7.1 Separation of Variables
      • 1.7.2 Residual Norm
    • 1.8 References and Recommended Texts
    • 1.9 Problem Set
    • 1.10 Answers to the Problem Set
    • 1.11 Additional Problems
    • 1.12 Solution to the Additional Problems
  • 2 Calculus-Differentiation
    • 2.1 Preface
    • 2.2 Introduction
    • 2.3 Functions of One Variable
      • 2.3.1 Rates of Change
      • 2.3.2 Composite Functions
      • 2.3.3 Higher Derivatives
      • 2.3.4 Critical Points
    • 2.4 Functions of Several Variable
      • 2.4.1 Using Flow Diagrams
      • 2.4.2 Partial Derivatives
      • 2.4.3 Critical Points in Three Dimensions
    • 2.5 Bibliography
    • 2.6 Problem Set
    • 2.7 Answers to the Problem Set
    • 2.8 Additional Problems
    • 2.9 Answers to the Additional Problems
  • 3 Dimensional Methods
    • 3.1 Preface
    • 3.2 Introduction
    • 3.3 SI Units
      • 3.3.1 Fundamental Mechanical Units
      • 3.3.2 Temperature Scales
      • 3.3.3 Supplementary Mechanical Units
      • 3.3.4 Angular Units
      • 3.3.5 Derived Units
      • 3.3.6 Auxiliary Prefixs of the Metric System
    • 3.4 Dimentional Homogeneity
      • 3.4.1 The Dimentional Constraints on Definitional and Empirical Equations
      • 3.4.2 Intensive and Extensive Properties
      • 3.4.3 Conversion Factors
    • 3.5 Problem Set
    • 3.6 Answers and Solutions
    • 3.7 References
  • 4 Foundations of Physical Theory
    • 4.1 Preface
    • 4.2 The Atomic Theory
    • 4.3 Basic Force Laws
      • 4.3.1 Inertia
    • 4.4 Gravitational Force
      • 4.4.1 Electromagnetic Force
      • 4.4.2 Other Force “Laws”
    • 4.5 Energy
      • 4.5.1 Work and Potential Energy
      • 4.5.2 Kinetic Energy
      • 4.5.3 Conservation of Energy
      • 4.5.4 Gravitational and Electrostatic Potential Energy
    • 4.6 Problem Set
    • 4.7 Answers to the Problem Set
    • 4.8 Bibliography
  • 5 Thermodynamics Intro
    • 5.1 Preface
    • 5.2 Energy Exchange of Organisms
    • 5.3 Thermodynamics
      • 5.3.1 Scope of Thermodynamics
      • 5.3.2 Systems Concepts
      • 5.3.3 Temperature
    • 5.4 First Law of Thermodynamics
      • 5.4.1 Internal Energy
      • 5.4.2 Heat and Heat Transfer Processes
      • 5.4.3 Work
    • 5.5 Problem Set
    • 5.6 Answers to the Problem Set
    • 5.7 Literature Cited
  • 6 Thermodynamic Applications
    • 6.1 Preface
    • 6.2 Introduction
    • 6.3 Applications of the First Law
      • 6.3.1 Work
      • 6.3.2 Examples of Heat Energy Exchange
      • 6.3.3 The First Law Generalized to Include Mass Flow
    • 6.4 Problem Set
    • 6.5 Answers to the Problem Set
    • 6.6 Literature Cited
    • 6.7 Bibliography
      • 6.7.1 General Texts and Papers on Energy Budgets
      • 6.7.2 Meteorology
      • 6.7.3 Thermodynamics and Heat Transfer
  • 7 Heat Transfer
    • 7.1 Preface
    • 7.2 Introduction
    • 7.3 Heat Transfer Processes
      • 7.3.1 Radiation
      • 7.3.2 Conduction
      • 7.3.3 Convection
      • 7.3.4 Evaporation
    • 7.4 Thermal Properties of Materials
    • 7.5 Examples of Heat Energy Budget
      • 7.5.1 Heat Flow in Soil
      • 7.5.2 A Leaf
      • 7.5.3 A Lizard
    • 7.6 Problem Set
    • 7.7 Answers to the Problem Set
    • 7.8 Bibliography
  • 8 Light and Sound.
    • 8.1 PREFACE
    • 8.2 INTRODUCTION
    • 8.3 BLACK BODY RADIATION
      • 8.3.1 Wein’s Law of Shift
      • 8.3.2 Stefan-Boltzmann Law
      • 8.3.3 The solar constant
    • 8.4 RESOLUTION
    • 8.5 THE DOPPLER EFFECT
    • 8.6 SUMMARY
    • 8.7 LITERATURE CITED
  • 9 The Climate Space Concept
    • 9.1 PREFACE
    • 9.2 INTRODUCTION
    • 9.3 THE THERMAL ENVIRONMENT: BASIS FOR THE CLIMATE SPACE
      • 9.3.1 Absorbed radiation
      • 9.3.2 Environmental Constraints
    • 9.4 PHYSIOLOGICAL CONTRAINTS OF THE ORGANISM
      • 9.4.1 Defining a function for computing the bounding air temperature/radiation combinations
      • 9.4.2 Plotting climate space boundaries for a cylinder with varing solar absorptivity
      • 9.4.3 Plotting the climate space of the Desert Iguana
      • 9.4.4 Plotting the climate space of the Zebra Finch
      • 9.4.5 The Lizard
      • 9.4.6 The Cardinal
      • 9.4.7 Monteith’s Idea
    • 9.5 EXTENSIONS OF THE CLIMATE SPACE IDEA
    • 9.6 LITERATURE CITED
    • 9.7 PROBLEMS
    • 9.8 PROBLEM SOLUTIONS
    • 9.9 Appendix I
      • 9.9.1 Appendix II
  • 10 Operative temperature
    • 10.1 PREFACE
    • 10.2 INTRODUCTION
    • 10.3 ANIMAL THERMOREGULATION
      • 10.3.1 The Physical Environment
      • 10.3.2 Thermoregulation and the Ecogeographical Rules
      • 10.3.3 Other Ecological Considerations
    • 10.4 THE OPERATIVE ENVIRONMENTAL TEMPERATURE
      • 10.4.1 Mathematical Development of the Operative Environmental Temperature
      • 10.4.2 Laboratory and Field Applicatons of the Operative Environmental Temperatures
      • 10.4.3 Field Applications
    • 10.5 SUMMARY
    • 10.6 LITERATURE CITED
    • 10.7 PROBLEMS
    • 10.8 PROBLEM SOLUTIONS
  • 11 Transpiration and Leaf Temperature
    • 11.1 PREFACE
    • 11.2 INTRODUCTION
    • 11.3 LEAF ENERGY BUDGET
      • 11.3.1 Resistance to Water Loss
      • 11.3.2 Transpiration Rate
    • 11.4 COMPLETE ENERGY BUDGET
      • 11.4.1 Values of Leaf Parameters
      • 11.4.2 Values of the Environmental Variables
    • 11.5 INFLUENCE OF ENERGY COMPONENTS ON LEAF TEMPERATURE
    • 11.6 MORE DETAILED ENERGY BUDGET
    • 11.7 ANALYSIS OF A MORE GENERAL MODEL
      • 11.7.1 Calculations of Leaf Temperatures and Transpiration
      • 11.7.2 Sample Plots of Transpiration and Leaf Temperature
    • 11.8 CONCLUSION
    • 11.9 LITERATURE CITED
    • 11.10 PROBLEMS
    • 11.11 PROBLEM SOLUTIONS
  • 12 Heat balance of a sheep.
    • 12.1 PREFACE
    • 12.2 INTRODUCTION
    • 12.3 ENERGY BALANCE
    • 12.4 HEAT TRANSFER BY CONDUCTION WITHIN THE ANIMAL
    • 12.5 HEAT LOSS BY CONVECTION
    • 12.6 HEAT LOSS BY RADIATION
    • 12.7 HEAT GAINED BY ABSORPTION OF RADIATION
      • 12.7.1 Direct Solar Radiation
      • 12.7.2 Sky Radiation
      • 12.7.3 Reflected Short-Wave Radiation
      • 12.7.4 Long-Wave Radiation
    • 12.8 METABOLIC HEAT
    • 12.9 AN ENERGY BALANCE CALCULATION
    • 12.10 REFERENCES
    • 12.11 PROBLEMS
    • 12.12 PROBLEM SOLUTIONS
  • 13 Soil Heat Flow.
    • 13.1 PREFACE
    • 13.2 INTRODUCTION
    • 13.3 GOVERNING FACTORS IN SOIL HEAT FLOW
    • 13.4 FORMAL DEVELOPMENT
      • 13.4.1 Fourier’s Law of Heat Conduction
      • 13.4.2 Heat Storage and Energy Conservation
      • 13.4.3 Heat Conduction (Diffusion) Equation
    • 13.5 USE OF THE HEAT CONDUCTION EQUATION
      • 13.5.1 Boundary Conditions
      • 13.5.2 Properties of the Harmonic Solution
      • 13.5.3 Comparison of Theory with Experiment
      • 13.5.4 Application of Results
    • 13.6 LITERATURE CITED
    • 13.7 PROBLEMS
    • 13.8 PROBLEM SOLUTIONS
  • 14 Turbulence and Fluid Flow
    • 14.1 PREFACE
    • 14.2 INTRODUCTION
    • 14.3 DESCRIPTION OF TURBULENCE
      • 14.3.1 Variability
      • 14.3.2 Diffusivity
    • 14.4 ORIGINS OF TURBULENCE
      • 14.4.1 Viscosity and Laminar Shear Flows
      • 14.4.2 Turbulent Shear Flow
    • 14.5 THEORIES OF TURBULENCE
      • 14.5.1 Reynolds Averaging
      • 14.5.2 K Theory
      • 14.5.3 Boundary Layers and Non-dimensional Numbers: A Bulk Approach
    • 14.6 RECAPITULATION
    • 14.7 LITERATURE CITED
    • 14.8 PROBLEMS
    • 14.9 PROBLEM SOLUTIONS
  • 15 Appendix 1. Working with microclim
    • 15.1 Introduction
    • 15.2 Initial setup
    • 15.3 Overview of the microclimate data
    • 15.4 Solar Radiation
    • 15.5 Zenith Angle
    • 15.6 Wind Speed
    • 15.7 Air Temperature
    • 15.8 Sky Temperature
    • 15.9 Relative Humidity
    • 15.10 Soil Temperature
    • 15.11 LITERATURE CITED
    • 15.12 PROBLEMS
  • 16 Appendix 2. Mapping climate space
    • 16.1 Introduction
    • 16.2 Initial setup
    • 16.3 Getting the climate space available in Australia
    • 16.4 Mapping the climate space of the Desert Iguana in North America
    • 16.5 Mapping the cold limits of the Desert Iguana
    • 16.6 Mapping the heat limit of the Desert Iguana
    • 16.7 LITERATURE CITED
  • 17 List of Symbols
  • Published with bookdown

Physical Processes in Ecosystems

1.8 References and Recommended Texts

Calculus

Allen, R. C.,Jr. and Wing, G. M. 1973. Problems for a computer-oriented course. Prentice-Hall, Englewood Cliffs, N. J., 206 pp.

Ayres, F., Jr. 1964. Theory and problems of differential and integralsecond ed., Schaum’s Outline Series, McGraw-Hill, New York

Baxter, W. E. and Sloyer, C. W. 1973. Calculus with probability for the life management sciences, Addison-Wesley, Reading, Ma. 648 pp.

Bittinger, M. L. 1976. Calculus: A modeling approach, Addison-Wesley,Reading, Ma.

Clow, D. J. and Urquhart, N. S. 1974. Mathematics in biology, Norton, NewYork, 727 pp.

Coughlin, R. F. 1976. Applied, calculus, Allyn and Bacon, Boston, Ma.

Hertzberg, R. C. 1979. Calculus-differentiation. An instructional module: Physical processes in terrestrial and aquatic ecosystems. Ctr. Quantitative Sci., Univ. Washington, Seattle, 64 pp.

Keisler, H. J. 1971. Elementary calculus: An approach using infinitesimals, Prindle, Weber and Schmidt, Boston, Ma.

Schwartz, A. 1974. Calculus and analytical geometry. Third ed., Holt, Rinehart and Winston, New York, 1140 pp.

Sternberg, W., Walker, R. J. et al. 1968. Calculus, a computer oriented presentation, The Center for Research in College Instruction in Science and Mathematics (CRICISAM), Florida State University, Tallahassee.

General

Dickson, K., Cairns, J., Jr., et al. 1977. Effects of intermittent chlorination on aquatic organisms and communities. J. Water Poll. Control Fed., 49, 35-44.

Dugan, P. R. 1972. Biochemical ecology of water pollution. Plenum Press, New York, 159 pp.

Gales, L. 1979. User’s guide for subroutine PRNT3D. An instructional module: Physical processes in terrestrial and aquatic ecosystems. Ctr. Quantitative Sci., Univ. Washington, Seattle, 27 pp.

Gold, H. 1977. Mathematicalmodelingof biological systems. Wiley-Interscience,New York, 357 pp.

Handbook of applied mathematics. 1974. C. Pearson, ed. Van NostrandReinhold, New York, 1265 pp.

Warren, C. E. 1971. Biology and water pollution control. W. B. Saunders, Philadelphia, 434 pp.

Tables

Handbook of Mathematical Functions, 1964. Abramowitz, M. and Stegun, I., eds., National Bureau of Standards, Applied Mathematics Series, 55, Washington, D.C.

Handbook of Mathematical Tables, 1964. Weast, R. C., Selby, M. and Hodgman, C. D., eds., The Chemical Rubber Co., Cleveland.