20 - use case: Get all hourly rainfall data 2014:2016

20.1 get the URLS of data to be downloaded

## rdwd::updateRdwd()
library(rdwd)
links <- selectDWD(res="daily", var="more_precip", per="hist")
length(links) # ca 5k stations - would take very long to download
## [1] 5737
# select only the relevant files:
data("metaIndex")
myIndex <- metaIndex[
  metaIndex$von_datum < as.Date("2014-01-01") &
  metaIndex$bis_datum > as.Date("2016-12-31") & metaIndex$hasfile   ,  ]
data("fileIndex")
links <- fileIndex[
  suppressWarnings(as.numeric(fileIndex$id)) %in% myIndex$Stations_id &
  fileIndex$res=="daily" &
  fileIndex$var=="more_precip" &
  fileIndex$per=="historical"         , "path" ]

length(links) # ca 2k elements - much better
## [1] 2087

20.2 download the data

If some downloads fail (mostly because you’ll get kicked off the FTP server), you can just run the same code again and only the missing files will be downloaded.

If you really want to download 2k historical (large!) datasets, you might need to set sleep in dataDWD to a relatively high value.

For speed, we’ll only work with the first 3 urls.

localfiles <- dataDWD(links[1:3], joinbf=TRUE, sleep=0.2, read=FALSE)

20.3 read the data

2k large datasets probably is way too much for memory, so we’ll use a custom reading function. It will only select the relevant time section and rainfall column. The latter will be named with the id extracted from the filename.

readVars(localfiles[1])[,-3] # we want the RS column
ParKurzEinheit
NSH_TAGSchneehoehe_Neucm
RSNiederschlagshoehemm
RSFNiederschlagsformnumerischer Code
SH_TAGSchneehoehecm
read2014_2016 <- function(file, fread=TRUE, ...)
{
 out <- readDWD(file, fread=fread, ...)
 out <- out[out$MESS_DATUM > as.POSIXct(as.Date("2014-01-01")) & 
            out$MESS_DATUM < as.POSIXct(as.Date("2016-12-31"))    , ]
 out <- out[ , c("MESS_DATUM", "RS")]
 out$MESS_DATUM <- as.Date(out$MESS_DATUM) # might save some memory space...
 # Station id as column name:
 idstringloc <- unlist(gregexpr(pattern="tageswerte_RR_", file))
 idstring <- substring(file, idstringloc+14, idstringloc+18)
 colnames(out) <- c("date",  idstring)
 return(out)
}
str(read2014_2016(localfiles[1])) # test looks good
## Warning in .check_tzones(e1, e2): 'tzone' attributes are inconsistent

## Warning in .check_tzones(e1, e2): 'tzone' attributes are inconsistent
## 'data.frame':    1090 obs. of  2 variables:
##  $ date : Date, format: "2014-01-02" "2014-01-03" ...
##  $ 00006: num  1.8 0.4 2.3 0.7 0.2 0 0 8.3 0 4 ...

Now let’s apply this to all our files and merge the result.

library(pbapply) # progress bar for lapply loop

rain_list <- pblapply(localfiles, read2014_2016)
## Warning in .check_tzones(e1, e2): 'tzone' attributes are inconsistent

## Warning in .check_tzones(e1, e2): 'tzone' attributes are inconsistent

## Warning in .check_tzones(e1, e2): 'tzone' attributes are inconsistent

## Warning in .check_tzones(e1, e2): 'tzone' attributes are inconsistent

## Warning in .check_tzones(e1, e2): 'tzone' attributes are inconsistent

## Warning in .check_tzones(e1, e2): 'tzone' attributes are inconsistent
rain_df <- Reduce(function(...) merge(..., all=T), rain_list)
str(rain_df) # looks nice!
## 'data.frame':    1094 obs. of  4 variables:
##  $ date : Date, format: "2014-01-02" "2014-01-03" ...
##  $ 00006: num  1.8 0.4 2.3 0.7 0.2 0 0 8.3 0 4 ...
##  $ 00015: num  1.2 0.2 1.5 1.5 0 0 0 5.1 0.3 0.6 ...
##  $ 00019: num  3.3 0.4 2.9 0 0.2 0.1 0 6.3 0.2 3.1 ...
summary(rain_df) # 9 NAs in station 00006
##       date                00006            00015            00019       
##  Min.   :2014-01-02   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.:2014-10-02   1st Qu.: 0.000   1st Qu.: 0.000   1st Qu.: 0.000  
##  Median :2015-07-02   Median : 0.100   Median : 0.000   Median : 0.100  
##  Mean   :2015-07-02   Mean   : 2.142   Mean   : 1.647   Mean   : 2.152  
##  3rd Qu.:2016-03-31   3rd Qu.: 1.900   3rd Qu.: 1.500   3rd Qu.: 1.900  
##  Max.   :2016-12-30   Max.   :68.400   Max.   :54.000   Max.   :53.600  
##                       NA's   :5

20.4 visual data checks

plot(rain_df$date, rain_df[,2], type="n", ylim=range(rain_df[,-1], na.rm=T), 
     las=1, xaxt="n", xlab="Date", ylab="Daily rainfall sum  [mm]")
berryFunctions::monthAxis()
for(i in 2:ncol(rain_df)) lines(rain_df$date, rain_df[,i], col=sample(colours(), size=1))

plot(rain_df[,2:4]) # correlation plot only works for a few columns!

Let’s see the locations of our stations in an interactive map.

data(geoIndex)  ;  library(leaflet) 
mygeoIndex <- geoIndex[geoIndex$id %in% as.numeric(colnames(rain_df)[-1]),]

leaflet(data=mygeoIndex) %>% addTiles() %>%
        addCircleMarkers(~lon, ~lat, popup=~display, stroke=T)

For a static map with scaleBar, OSMscale works nicely but has a Java dependency, see https://github.com/brry/OSMscale#installation

library(OSMscale)
pointsMap("lat", "lon", mygeoIndex, fx=2, fy=1, pargs=list(lwd=3), 
                    col="blue", zoom=5)