10 - use case: recent time series
download & read data
## rdwd::updateRdwd()
library(rdwd)
link <- selectDWD("Potsdam", res="daily", var="kl", per="recent")
clim <- dataDWD(link, force=NA, varnames=TRUE)
str(clim)
## 'data.frame': 550 obs. of 19 variables:
## $ STATIONS_ID : int 3987 3987 3987 3987 3987 3987 3987 3987 3987 3987 ...
## $ MESS_DATUM : Date, format: "2023-01-23" "2023-01-24" ...
## $ QN_3 : int 10 10 10 10 10 10 10 10 10 10 ...
## $ FX.Windspitze : num 7.5 5.5 7.2 5.3 10 7.3 13.1 23.5 19.1 17.8 ...
## $ FM.Windgeschwindigkeit : num 2.8 2 2 2.1 2.7 2.3 5.2 8.4 7.9 8.3 ...
## $ QN_4 : int 9 9 9 9 9 9 9 9 9 9 ...
## $ RSK.Niederschlagshoehe : num 0 0 0 0 0.4 0 0.2 2.8 2.5 5.9 ...
## $ RSKF.Niederschlagsform : int 7 0 6 8 8 6 8 6 6 6 ...
## $ SDK.Sonnenscheindauer : num 0 0 0 0 0 0 0.6 1 0 0.1 ...
## $ SHK_TAG.Schneehoehe : int 0 0 0 0 0 0 0 0 0 0 ...
## $ NM.Bedeckungsgrad : num 7.9 8 8 8 7.8 7.7 7.9 6.5 6.8 7.3 ...
## $ VPM.Dampfdruck : num 6.2 5.4 5.9 5.3 6.2 4.6 5.6 6.6 7.1 6.9 ...
## $ PM.Luftdruck : num 1025 1028 1020 1010 1012 ...
## $ TMK.Lufttemperatur : num 1.6 0.5 0.3 -1.1 1.2 0 0.7 3.6 4.1 4.2 ...
## $ UPM.Relative_Feuchte : num 90 85 94 95 92 76 87 83 86 84 ...
## $ TXK.Lufttemperatur_Max : num 2.5 1.2 1.1 -0.6 3.1 1.4 3 7 6.1 6.2 ...
## $ TNK.Lufttemperatur_Min : num 0.8 -0.5 -0.6 -1.7 -0.6 -2.3 -1.2 1 2.2 2 ...
## $ TGK.Lufttemperatur_5cm_min: num 0.3 -0.6 -0.7 -1.7 -0.7 -5.2 -1.9 0.5 0.5 0.9 ...
## $ eor : Factor w/ 1 level "eor": 1 1 1 1 1 1 1 1 1 1 ...
plot time series