21 scratch area
We have the identity c(t)=∫∞E0dEρ(E)e−Et=ρe−Et−t∣∞E0−∫∞E0dEρ′(E)e−Et−t thus using as a base ˜bt(E)=e−Ett to approximate Δ using the HLT we can compute the convolution ∫ρ′Δ ∑tgtc(t)=∫∞E0dEρ′(E)∑tgte−Ett=∫∞E0dEρ′(E)˜Δ(E)=ρΔ∣∞E0−∫∞E0dEρ(E)˜Δ′(E). So if we use as base ˜bt(E)=e−Ett to approximate Δ with the HLT we can compute the convolution −∫ρΔ′. For Z0 the kernel function is θ0(ω−ω0)=c1+eω−ω0σ,−∫θ0(ω−ω0)=c[σlog(eω0σ+eωσ.)−ω]
One could also try −∫θ0(ω−ω0)≈−(ω−ω0)θ0(ω−ω0)
We could iterate the procedure and use as base b′′t=e−Ett2 to approximate ∫∫Δ ∫∫Δ=∫∫θ0(ω−ω0)≈12(ω−ω0)2θ0(ω−ω0)
We try a different function that approach the θ, the algebraic function θalgebraic0=c2(x√1+x2+1),x=ω0−ωσ
21.1 Stability
21.2 Z0
θ0(ω−ω0) = 0.0593(19) , χ2/dof= 0.15622
−∫θ0(ω−ω0) = 0.0583(43) , χ2/dof= 0.18837
−(ω−ω0)θ0(ω−ω0) = 0.0583(43) , χ2/dof= 0.18837
0.5(ω−ω0)2θ0(ω−ω0) = 0.0475(80) , χ2/dof= 0.20377
θalgebraic0(ω−ω0) = 0.0593(19) , χ2/dof= 0.1562
<r >
21.3 Z0
<r >
21.4 Z0
<r >
21.5 Z0
<r >
21.6 Z0
<r >
21.7 σ extrapolation
21.8 Z0
<r >