Loading [MathJax]/jax/output/SVG/jax.js

17  Continuum limit

the result for the continuum extrapolation is:

00.10.20.30.40.50.60.70.80.20.30.40.50.60.70.80.91
(sum,1)(sum-Z0-part,1)$q^2[GeV]$$24 \pi^3 d\Gamma/dq^2 [GeV^{-3}]$

<r >

q2[GeV] 24π3dΓ/dq2[GeV3]
0.0087236 0.1739(34)
0.0348942 0.3682(62)
0.0785119 0.5798(90)
0.1395768 0.769(13)
0.2180886 0.922(14)
0.3140476 0.963(15)
0.4274538 0.922(14)
0.5583068 0.814(17)
0.7066072 0.516(16)
0.7872999 0.453(17)

17.0.1 Correlation

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
1.000000 0.68070 0.388800 0.13210 0.08082 0.1747 0.05722 -0.14630 -0.079790 0.004728
0.680700 1.00000 0.674000 0.33840 0.22110 0.2600 0.08599 0.03792 0.024130 -0.011460
0.388800 0.67400 1.000000 0.63240 0.29910 0.1699 -0.01466 0.04222 0.007518 -0.122800
0.132100 0.33840 0.632400 1.00000 0.54200 0.2941 0.05793 0.08359 0.018350 -0.123100
0.080820 0.22110 0.299100 0.54200 1.00000 0.6678 0.31160 0.16680 0.100400 0.020280
0.174700 0.26000 0.169900 0.29410 0.66780 1.0000 0.70650 0.39080 0.241600 0.176900
0.057220 0.08599 -0.014660 0.05793 0.31160 0.7065 1.00000 0.68110 0.415700 0.260300
-0.146300 0.03792 0.042220 0.08359 0.16680 0.3908 0.68110 1.00000 0.596300 0.320200
-0.079790 0.02413 0.007518 0.01835 0.10040 0.2416 0.41570 0.59630 1.000000 0.769600
0.004728 -0.01146 -0.122800 -0.12310 0.02028 0.1769 0.26030 0.32020 0.769600 1.000000
Using names(df_corr) as id variables

17.1 Fits

χ2/dof= 0.83977

P value
P[0] 0.1739(34)
00.0010.0020.0030.0040.0050.0060.0070.0080.150.160.170.180.19
fit048648096112$a^2[fm]$$24 \pi^3 d\Gamma/dq^2 [GeV^{-3}](th1)$

<r >

χ2/dof= 1.66512

P value
P[0] 0.3682(62)
00.0010.0020.0030.0040.0050.0060.0070.0080.320.340.360.380.4
fit048648096112$a^2[fm]$$24 \pi^3 d\Gamma/dq^2 [GeV^{-3}](th2)$

<r >

χ2/dof= 1.12895

P value
P[0] 0.5798(90)
00.0010.0020.0030.0040.0050.0060.0070.0080.520.540.560.580.60.620.64
fit048648096112$a^2[fm]$$24 \pi^3 d\Gamma/dq^2 [GeV^{-3}](th3)$

<r >

χ2/dof= 1.41732

P value
P[0] 0.769(13)
00.0010.0020.0030.0040.0050.0060.0070.0080.70.750.80.850.9
fit048648096112$a^2[fm]$$24 \pi^3 d\Gamma/dq^2 [GeV^{-3}](th4)$

<r >

χ2/dof= 3.52508

P value
P[0] 0.922(14)
00.0010.0020.0030.0040.0050.0060.0070.0080.80.850.90.9511.05
fit048648096112$a^2[fm]$$24 \pi^3 d\Gamma/dq^2 [GeV^{-3}](th5)$

<r >

χ2/dof= 1.45172

P value
P[0] 0.963(15)
00.0010.0020.0030.0040.0050.0060.0070.0080.880.90.920.940.960.9811.021.04
fit048648096112$a^2[fm]$$24 \pi^3 d\Gamma/dq^2 [GeV^{-3}](th6)$

<r >

χ2/dof= 0.246441

P value
P[0] 0.922(14)
00.0010.0020.0030.0040.0050.0060.0070.0080.840.860.880.90.920.940.960.981
fit048648096112$a^2[fm]$$24 \pi^3 d\Gamma/dq^2 [GeV^{-3}](th7)$

<r >

χ2/dof= 2.52506

P value
P[0] 0.814(17)
00.0010.0020.0030.0040.0050.0060.0070.0080.60.650.70.750.80.850.9
fit048648096112$a^2[fm]$$24 \pi^3 d\Gamma/dq^2 [GeV^{-3}](th8)$

<r >

χ2/dof= 0.862133

P value
P[0] 0.516(16)
00.0010.0020.0030.0040.0050.0060.0070.0080.40.450.50.550.60.65
fit048648096112$a^2[fm]$$24 \pi^3 d\Gamma/dq^2 [GeV^{-3}](th9)$

<r >

χ2/dof= 2.81656

P value
P[0] 0.453(17)
00.0010.0020.0030.0040.0050.0060.0070.0080.150.20.250.30.350.40.450.50.550.6
fit048648096112$a^2[fm]$$24 \pi^3 d\Gamma/dq^2 [GeV^{-3}](th9.5)$

<r >

17.2 Volume dependance of ensemle B

50607080900.150.160.170.180.19
cB211.072$L$$24 \pi^3 d\Gamma/dq^2 [GeV^-3]$
<r >
50607080900.340.350.360.370.380.390.4
cB211.072$L$$24 \pi^3 d\Gamma/dq^2 [GeV^-3]$
<r >
50607080900.520.540.560.580.60.620.64
cB211.072$L$$24 \pi^3 d\Gamma/dq^2 [GeV^-3]$
<r >
50607080900.70.720.740.760.780.8
cB211.072$L$$24 \pi^3 d\Gamma/dq^2 [GeV^-3]$
<r >
506070809000.20.40.60.81
cB211.072$L$$24 \pi^3 d\Gamma/dq^2 [GeV^-3]$
<r >
50607080900.880.90.920.940.960.9811.021.04
cB211.072$L$$24 \pi^3 d\Gamma/dq^2 [GeV^-3]$
<r >
50607080900.840.860.880.90.920.940.96
cB211.072$L$$24 \pi^3 d\Gamma/dq^2 [GeV^-3]$
<r >
50607080900.650.70.750.80.85
cB211.072$L$$24 \pi^3 d\Gamma/dq^2 [GeV^-3]$
<r >
50607080900.450.50.550.60.65
cB211.072$L$$24 \pi^3 d\Gamma/dq^2 [GeV^-3]$
<r >
50607080900.40.450.50.55
cB211.072$L$$24 \pi^3 d\Gamma/dq^2 [GeV^-3]$

<r >