References

Briggs, A., Clark, T., Wolstenholme, J., & Clarke, P. (2003). Missing…. presumed at random: cost‐analysis of incomplete data. Health economics, 12(5), 377-392.

Burzykowski, T., Carpenter, J., Coens, C., Evans, D., France, L., Kenward, M., … & PSI Missing Data Expert Group. (2010). Missing data: Discussion points from the PSI missing data expert group. Pharmaceutical Statistics, 9(4), 288-297.

Faria, R., Gomes, M., Epstein, D., & White, I. R. (2014). A guide to handling missing data in cost-effectiveness analysis conducted within randomised controlled trials. Pharmacoeconomics, 32(12), 1157-1170.

Glynn, R. J., Laird, N. M., & Rubin, D. B. (1986). Selection modeling versus mixture modeling with nonignorable nonresponse. In Drawing inferences from self-selected samples (pp. 115-142). Springer, New York, NY.

Hayati Rezvan P, Lee KJ, Simpson JA. The rise of multiple imputation: a review of the reporting and implementation of the method in medical research. BMC Med Res Methodol. 2015;15(1):30. doi:10.1186/s12874-015-0022-1

Heckman JJ. Sample selection bias as a specification error. Econometrica. 1979;47(1):153-161. doi:10.2307/1912352

Howe CJ, Cole SR, Lau B, Napravnik S, Eron JJ, Jr. Selection bias due to loss to follow up in cohort studies. Epidemiol Camb Mass. 2016;27(1):91. doi:10.1097/EDE.0000000000000409

Leurent B, Gomes M, Faria R, Morris S, Grieve R, Carpenter JR. Sensitivity Analysis for Not-at-Random Missing Data in Trial-Based Cost-Effectiveness Analysis: A Tutorial. Pharmacoeconomics. 2018;36(8):889-901. doi:10.1007/s40273-018-0650-5

Little RJA. A class of pattern-mixture models for normal incomplete data. Biometrika. 1994;81(3):471-483. doi:10.2307/2337120

Little, R. J., D’Agostino, R., Cohen, M. L., Dickersin, K., Emerson, S. S., Farrar, J. T., … & Stern, H. (2012). The prevention and treatment of missing data in clinical trials. New England Journal of Medicine, 367(14), 1355-1360.

Little, R. J., & Rubin, D. B. (2019). Statistical analysis with missing data (Vol. 793). John Wiley & Sons.

National Research Council. (2010). Principles and methods of sensitivity analyses. In The Prevention and Treatment of Missing Data in Clinical Trials. National Academies Press (US).

Rubin DB. Multiple imputation for nonresponse in surveys. John Wiley & Sons; 1987.

Thijs, H., Molenberghs, G., Michiels, B., Verbeke, G., & Curran, D. (2002). Strategies to fit pattern‐mixture models. Biostatistics, 3(2), 245-265.

van Buuren S. Flexible imputation of missing data, Second Edition. Chapman and Hall/CRC; 2018. Accessed May 1, 2022. https://stefvanbuuren.name/fimd/

VanderWeele TJ, Ding P. Sensitivity Analysis in Observational Research: Introducing the E-Value. Ann Intern Med. 2017 Aug 15;167(4):268–74.

Westreich D. Berkson’s bias, selection bias, and missing data. Epidemiol Camb Mass. 2012;23(1):159-164. doi:10.1097/EDE.0b013e31823b6296