library(tidyverse)
tuesdata <- tidytuesdayR::tt_load(2022, week = 47)
museums <- tuesdata$museums
museums %>% headmuseums %>%
DataExplorer::profile_missing()# https://stackoverflow.com/questions/54560369/png-of-static-map-using-r-and-mapdeck
library(tidyverse)
df = read.csv("https://git.io/geocompr-mapdeck")
dflibrary(mapdeck)
set_token("MAPBOX_TOKEN")
ms = mapdeck_style("dark")
df <- df[!is.na(df$lat), ]
mapdeck(style = ms, pitch = 45) %>%
add_grid(data = df, lat = "lat", lon = "lng",
cell_size = 1000,
elevation_scale = 50,
layer_id = "grid_layer",
colour_range = colourvalues::colour_values(1:6, palette = "plasma")) mapdeck(style = mapdeck_style('dark'),zoom = 1) %>%
add_grid(data = df,
lat = "lat",
lon = "lng",
cell_size = 1000,
elevation_scale = 50,
layer_id = "grid_layer",
colour_range = colourvalues::colour_values(1:6, palette = "plasma")) %>%
add_scatterplot(data = museums,
lat = "Latitude",
lon = "Longitude",
radius = 0.5,
legend = TRUE,
fill_colour = "Accreditation",
layer_id = "scatter_layer",
palette = "viridis") table <- museums %>%
select(museum_id,`Village,_Town_or_City`,Accreditation,Size,Subject_Matter) %>%
janitor::clean_names() %>%
group_by(accreditation) %>%
count(size) %>%
mutate(pct=round(n/sum(n)*100,2)) %>%
ungroup() %>%
pivot_wider(names_from = size,values_from = pct) %>%
select(-n) %>%
pivot_longer(cols = 2:6,names_to = "Type",values_to = "pct")%>%
na.omit() %>%
pivot_wider(names_from = accreditation,values_from = pct) %>%
gt::gt()
tablelibrary(cowplot)
ggdraw() +
draw_image("base_map.png") +
draw_image("table.png",
scale=0.25,
x=-0.3,y=0)ggplot2::ggsave("test.png",
dpi=320)