Chapter 3 Appendix
3.1 Common discrete distributions
Bernoulli
pmf: \(P(X=x \mid p)=p^x(1-p)^x\); \(x=0, 1\); \(0<p<1\)
mean and variance: \(E(X)=p\), \(Var(X)=p(1-p)\)
Binomial
- pmf \(P(X=x \mid n,p)={n \choose x} p^x(1-p)^{n-x}\); \(x=0, 1, 2, \ldots, n\)
- mean and variance: \(E(X)=np\), \(Var(X)=np(1-p)\)
Geometric
pmf: \(P(X=x \mid p)=(1-p)^{x-1}p,\; x=1,2,\ldots\)
mean and variance: \(E(X)=1/p\) and \(Var(X)=(1-p)/p^2\)
or
- pmf: \(P(X=x \mid p)=(1-p)^xp.\)
- mean and variance: \(E(X)=1/p-1\) and \(Var(X)=(1-p)/p^2\)
Negative Binomial
- pmf: \(P(X=x \mid r, p)={x+r-1 \choose r-1}p^r(1-p)^x, \; x=0,1,2,\ldots\)
- mean and variance: \(E(X)=\frac{r(1-p)}{p}\) and \(Var(X)=\frac{r(1-p)}{p^2}\).
Hypergeometric
pmf: \(P(X=x\mid M, N, n)=\frac{{{M \choose x}{N-M \choose n-x}}}{{N \choose n}}\); \(x=0,1,2,\ldots, n\);
\(max\bigg(0, n-(N-M)\bigg) \le x\le min(n, M)\); \(N, M, K>0\)
mean and variance: \(E(X)=n\cdot \frac{M}{N}\), \(Var(X)=\left(\frac{N-n }{N-1}\right )\cdot n \cdot \frac{M}{N}\cdot (1- \frac{M}{N})\)
Poisson
pmf: \(P(X=x \mid \lambda)=\frac{e^{-\lambda}\lambda^x}{x!}, \;\; x=0, 1, 2, \ldots.\)
mean and variance: \(E(X)=Var(X)=\lambda\).
3.2 Common continuous distributions
Normal
- pdf \(f(x\mid \mu,\sigma)=\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right], \;\;\;-\infty<x<\infty\)
- mean and variance: \(E(X)=\mu\), \(Var(X)=\sigma^2\)
- notes: sometimes called the Gaussian distribution.
Exponential
- pdf: \(f(x\mid \lambda)=\lambda e^{-\lambda x}\); \(x \ge 0\); \(\lambda>0\)
- mean and variance \(E(X)=1/\lambda\); \(Var(X)=1/\lambda^2\)
Gamma
pdf: \(f(x\mid \alpha,\beta)=\frac{1}{\beta^\alpha\Gamma(\alpha)}x^{\alpha-1}e^{-x/\beta}\); \(x\ge 0\); \(\alpha,\beta>0\)
mean and variance \(E(X)=\alpha\beta\), \(Var(X)=\alpha\beta^2\)
Chi-squared
pdf: \(f(x\mid \nu)=\frac{1}{2^{\nu/2}\Gamma(\nu/2)}x^{\frac{\nu}{2}-1}e^{-\frac{x}{2}}\); \(x\ge 0\); \(\nu=1, 2, 3,\ldots\)
mean and variance \(E(X)=\nu\), \(Var(X)=2\nu\)
Beta
- pdf: \(f(x\mid \alpha,\beta)=\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}\)
- mean and variance: \(E(X)=\frac{\alpha}{\alpha+\beta}\), \(Var(X)=\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}\)
3.3 Table of standard normal distribution
Each cell represents the probability \[ \Phi(z)=P(Z\le z). \]
z | .00 | .01 | .02 | .03 | .04 | .05 | .06 | .07 | .08 | .09 |
---|---|---|---|---|---|---|---|---|---|---|
-3.4 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0002 |
-3.3 | 0.0005 | 0.0005 | 0.0005 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0003 |
-3.2 | 0.0007 | 0.0007 | 0.0006 | 0.0006 | 0.0006 | 0.0006 | 0.0006 | 0.0005 | 0.0005 | 0.0005 |
-3.1 | 0.0010 | 0.0009 | 0.0009 | 0.0009 | 0.0008 | 0.0008 | 0.0008 | 0.0008 | 0.0007 | 0.0007 |
-3.0 | 0.0013 | 0.0013 | 0.0013 | 0.0012 | 0.0012 | 0.0011 | 0.0011 | 0.0011 | 0.0010 | 0.0010 |
-2.9 | 0.0019 | 0.0018 | 0.0018 | 0.0017 | 0.0016 | 0.0016 | 0.0015 | 0.0015 | 0.0014 | 0.0014 |
-2.8 | 0.0026 | 0.0025 | 0.0024 | 0.0023 | 0.0023 | 0.0022 | 0.0021 | 0.0021 | 0.0020 | 0.0019 |
-2.7 | 0.0035 | 0.0034 | 0.0033 | 0.0032 | 0.0031 | 0.0030 | 0.0029 | 0.0028 | 0.0027 | 0.0026 |
-2.6 | 0.0047 | 0.0045 | 0.0044 | 0.0043 | 0.0041 | 0.0040 | 0.0039 | 0.0038 | 0.0037 | 0.0036 |
-2.5 | 0.0062 | 0.0060 | 0.0059 | 0.0057 | 0.0055 | 0.0054 | 0.0052 | 0.0051 | 0.0049 | 0.0048 |
-2.4 | 0.0082 | 0.0080 | 0.0078 | 0.0075 | 0.0073 | 0.0071 | 0.0069 | 0.0068 | 0.0066 | 0.0064 |
-2.3 | 0.0107 | 0.0104 | 0.0102 | 0.0099 | 0.0096 | 0.0094 | 0.0091 | 0.0089 | 0.0087 | 0.0084 |
-2.2 | 0.0139 | 0.0136 | 0.0132 | 0.0129 | 0.0125 | 0.0122 | 0.0119 | 0.0116 | 0.0113 | 0.0110 |
-2.1 | 0.0179 | 0.0174 | 0.0170 | 0.0166 | 0.0162 | 0.0158 | 0.0154 | 0.0150 | 0.0146 | 0.0143 |
-2.0 | 0.0228 | 0.0222 | 0.0217 | 0.0212 | 0.0207 | 0.0202 | 0.0197 | 0.0192 | 0.0188 | 0.0183 |
-1.9 | 0.0287 | 0.0281 | 0.0274 | 0.0268 | 0.0262 | 0.0256 | 0.0250 | 0.0244 | 0.0239 | 0.0233 |
-1.8 | 0.0359 | 0.0351 | 0.0344 | 0.0336 | 0.0329 | 0.0322 | 0.0314 | 0.0307 | 0.0301 | 0.0294 |
-1.7 | 0.0446 | 0.0436 | 0.0427 | 0.0418 | 0.0409 | 0.0401 | 0.0392 | 0.0384 | 0.0375 | 0.0367 |
-1.6 | 0.0548 | 0.0537 | 0.0526 | 0.0516 | 0.0505 | 0.0495 | 0.0485 | 0.0475 | 0.0465 | 0.0455 |
-1.5 | 0.0668 | 0.0655 | 0.0643 | 0.0630 | 0.0618 | 0.0606 | 0.0594 | 0.0582 | 0.0571 | 0.0559 |
-1.4 | 0.0808 | 0.0793 | 0.0778 | 0.0764 | 0.0749 | 0.0735 | 0.0721 | 0.0708 | 0.0694 | 0.0681 |
-1.3 | 0.0968 | 0.0951 | 0.0934 | 0.0918 | 0.0901 | 0.0885 | 0.0869 | 0.0853 | 0.0838 | 0.0823 |
-1.2 | 0.1151 | 0.1131 | 0.1112 | 0.1093 | 0.1075 | 0.1056 | 0.1038 | 0.1020 | 0.1003 | 0.0985 |
-1.1 | 0.1357 | 0.1335 | 0.1314 | 0.1292 | 0.1271 | 0.1251 | 0.1230 | 0.1210 | 0.1190 | 0.1170 |
-1.0 | 0.1587 | 0.1562 | 0.1539 | 0.1515 | 0.1492 | 0.1469 | 0.1446 | 0.1423 | 0.1401 | 0.1379 |
-0.9 | 0.1841 | 0.1814 | 0.1788 | 0.1762 | 0.1736 | 0.1711 | 0.1685 | 0.1660 | 0.1635 | 0.1611 |
-0.8 | 0.2119 | 0.2090 | 0.2061 | 0.2033 | 0.2005 | 0.1977 | 0.1949 | 0.1922 | 0.1894 | 0.1867 |
-0.7 | 0.2420 | 0.2389 | 0.2358 | 0.2327 | 0.2296 | 0.2266 | 0.2236 | 0.2206 | 0.2177 | 0.2148 |
-0.6 | 0.2743 | 0.2709 | 0.2676 | 0.2643 | 0.2611 | 0.2578 | 0.2546 | 0.2514 | 0.2483 | 0.2451 |
-0.5 | 0.3085 | 0.3050 | 0.3015 | 0.2981 | 0.2946 | 0.2912 | 0.2877 | 0.2843 | 0.2810 | 0.2776 |
-0.4 | 0.3446 | 0.3409 | 0.3372 | 0.3336 | 0.3300 | 0.3264 | 0.3228 | 0.3192 | 0.3156 | 0.3121 |
-0.3 | 0.3821 | 0.3783 | 0.3745 | 0.3707 | 0.3669 | 0.3632 | 0.3594 | 0.3557 | 0.3520 | 0.3483 |
-0.2 | 0.4207 | 0.4168 | 0.4129 | 0.4090 | 0.4052 | 0.4013 | 0.3974 | 0.3936 | 0.3897 | 0.3859 |
-0.1 | 0.4602 | 0.4562 | 0.4522 | 0.4483 | 0.4443 | 0.4404 | 0.4364 | 0.4325 | 0.4286 | 0.4247 |
-0.0 | 0.5000 | 0.4960 | 0.4920 | 0.4880 | 0.4840 | 0.4801 | 0.4761 | 0.4721 | 0.4681 | 0.4641 |
0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
1.9 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 |
2.0 | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 |
2.1 | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 |
2.2 | 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890 |
2.3 | 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916 |
2.4 | 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936 |
2.5 | 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952 |
2.6 | 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 |
2.7 | 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974 |
2.8 | 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981 |
2.9 | 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 |
3.0 | 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990 |
3.1 | 0.9990 | 0.9991 | 0.9991 | 0.9991 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9993 | 0.9993 |
3.2 | 0.9993 | 0.9993 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9995 | 0.9995 | 0.9995 |
3.3 | 0.9995 | 0.9995 | 0.9995 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9997 |
3.4 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9998 |
3.4 Table of \(t\)-critical values
Each cell represents the value of \(t_{\alpha,\nu}\).
\(t_{\alpha,\nu}\) | \(\alpha=0.1\) | \(\alpha=0.075\) | \(\alpha=0.05\) | \(\alpha=0.025\) | \(\alpha=0.01\) | \(\alpha=0.005\) | \(\alpha=0.0005\) |
---|---|---|---|---|---|---|---|
\(\nu= 1\) | 3.078 | 4.165 | 6.314 | 12.706 | 31.821 | 63.657 | 636.619 |
\(\nu=2\) | 1.886 | 2.282 | 2.92 | 4.303 | 6.965 | 9.925 | 31.599 |
\(\nu=3\) | 1.638 | 1.924 | 2.353 | 3.182 | 4.541 | 5.841 | 12.924 |
\(\nu=4\) | 1.533 | 1.778 | 2.132 | 2.776 | 3.747 | 4.604 | 8.61 |
\(\nu=5\) | 1.476 | 1.699 | 2.015 | 2.571 | 3.365 | 4.032 | 6.869 |
\(\nu=6\) | 1.44 | 1.65 | 1.943 | 2.447 | 3.143 | 3.707 | 5.959 |
\(\nu=7\) | 1.415 | 1.617 | 1.895 | 2.365 | 2.998 | 3.499 | 5.408 |
\(\nu=8\) | 1.397 | 1.592 | 1.86 | 2.306 | 2.896 | 3.355 | 5.041 |
\(\nu=9\) | 1.383 | 1.574 | 1.833 | 2.262 | 2.821 | 3.25 | 4.781 |
\(\nu=10\) | 1.372 | 1.559 | 1.812 | 2.228 | 2.764 | 3.169 | 4.587 |
\(\nu=11\) | 1.363 | 1.548 | 1.796 | 2.201 | 2.718 | 3.106 | 4.437 |
\(\nu=12\) | 1.356 | 1.538 | 1.782 | 2.179 | 2.681 | 3.055 | 4.318 |
\(\nu=13\) | 1.35 | 1.53 | 1.771 | 2.16 | 2.65 | 3.012 | 4.221 |
\(\nu=14\) | 1.345 | 1.523 | 1.761 | 2.145 | 2.624 | 2.977 | 4.14 |
\(\nu=15\) | 1.341 | 1.517 | 1.753 | 2.131 | 2.602 | 2.947 | 4.073 |
\(\nu=16\) | 1.337 | 1.512 | 1.746 | 2.12 | 2.583 | 2.921 | 4.015 |
\(\nu=17\) | 1.333 | 1.508 | 1.74 | 2.11 | 2.567 | 2.898 | 3.965 |
\(\nu=18\) | 1.33 | 1.504 | 1.734 | 2.101 | 2.552 | 2.878 | 3.922 |
\(\nu=19\) | 1.328 | 1.5 | 1.729 | 2.093 | 2.539 | 2.861 | 3.883 |
\(\nu=20\) | 1.325 | 1.497 | 1.725 | 2.086 | 2.528 | 2.845 | 3.85 |
\(\nu=21\) | 1.323 | 1.494 | 1.721 | 2.08 | 2.518 | 2.831 | 3.819 |
\(\nu=22\) | 1.321 | 1.492 | 1.717 | 2.074 | 2.508 | 2.819 | 3.792 |
\(\nu=23\) | 1.319 | 1.489 | 1.714 | 2.069 | 2.5 | 2.807 | 3.768 |
\(\nu=24\) | 1.318 | 1.487 | 1.711 | 2.064 | 2.492 | 2.797 | 3.745 |
\(\nu=25\) | 1.316 | 1.485 | 1.708 | 2.06 | 2.485 | 2.787 | 3.725 |
\(\nu=26\) | 1.315 | 1.483 | 1.706 | 2.056 | 2.479 | 2.779 | 3.707 |
\(\nu=27\) | 1.314 | 1.482 | 1.703 | 2.052 | 2.473 | 2.771 | 3.69 |
\(\nu=28\) | 1.313 | 1.48 | 1.701 | 2.048 | 2.467 | 2.763 | 3.674 |
\(\nu=29\) | 1.311 | 1.479 | 1.699 | 2.045 | 2.462 | 2.756 | 3.659 |
\(\nu=30\) | 1.31 | 1.477 | 1.697 | 2.042 | 2.457 | 2.75 | 3.646 |
\(\nu=35\) | 1.306 | 1.472 | 1.69 | 2.03 | 2.438 | 2.724 | 3.591 |
\(\nu=40\) | 1.303 | 1.468 | 1.684 | 2.021 | 2.423 | 2.704 | 3.551 |
\(\nu=45\) | 1.301 | 1.465 | 1.679 | 2.014 | 2.412 | 2.69 | 3.52 |
\(\nu=50\) | 1.299 | 1.462 | 1.676 | 2.009 | 2.403 | 2.678 | 3.496 |
\(\nu=60\) | 1.296 | 1.458 | 1.671 | 2 | 2.39 | 2.66 | 3.46 |
\(\nu=70\) | 1.294 | 1.456 | 1.667 | 1.994 | 2.381 | 2.648 | 3.435 |
\(\nu=80\) | 1.292 | 1.453 | 1.664 | 1.99 | 2.374 | 2.639 | 3.416 |
\(\nu=100\) | 1.29 | 1.451 | 1.66 | 1.984 | 2.364 | 2.626 | 3.39 |
\(\nu=500\) | 1.283 | 1.442 | 1.648 | 1.965 | 2.334 | 2.586 | 3.31 |
\(\nu=1000\) | 1.282 | 1.441 | 1.646 | 1.962 | 2.33 | 2.581 | 3.3 |
\(\nu=\infty\) | 1.282 | 1.44 | 1.645 | 1.96 | 2.326 | 2.576 | 3.291 |