22 Data Wrangling and Analyses with Tidyverse”
questions: How can I manipulate data frames without repeating myself?
objectives:
- Describe what the dplyr
package in R is used for.
- Apply common dplyr
functions to manipulate data in R.
- Employ the ‘pipe’ operator to link together a sequence of functions.
- Employ the ‘mutate’ function to apply other chosen functions to existing columns
and create new columns of data.
- Employ the ‘split-apply-combine’ concept to split the data into groups, apply analysis
to each group, and combine the results.
keypoints:
- Use the dplyr
package to manipulate data frames.
- Use glimpse()
to quickly look at your data frame.
- Use select()
to choose variables from a data frame.
- Use filter()
to choose data based on values.
- Use mutate()
to create new variables.
- Use group_by()
and summarize()
to work with subsets of data.
Bracket subsetting is handy, but it can be cumbersome and difficult to read, especially for complicated operations.
Luckily, the dplyr
package provides a number of very useful functions for manipulating data frames
in a way that will reduce repetition, reduce the probability of making
errors, and probably even save you some typing. As an added bonus, you might
even find the dplyr
grammar easier to read.
Here we’re going to cover some of the most commonly used functions as well as using
pipes (%>%
) to combine them:
glimpse()
select()
filter()
group_by()
summarize()
mutate()
pivot_longer
andpivot_wider
Packages in R are sets of additional functions that let you do more
stuff in R. The functions we’ve been using, like str()
, come built into R;
packages give you access to more functions. You need to install a package and
then load it to be able to use it.
Set eval = TRUE if you don’t already have these packages installed:
install.packages("dplyr") ## installs dplyr package
install.packages("readr") ## install readr pacakge
install.packages("tidyr") ## install readr pacakge
library(dplyr) ## loads in dplyr package to use
library(readr) ## load in readr package to use
library(tidyr) ## load in tidyr package to use
You only need to install a package once per computer, but you need to load it every time you open a new R session and want to use that package.
22.1 What is dplyr?
The package dplyr
is a fairly new (2014) package that tries to provide easy
tools for the most common data manipulation tasks. This package is also included in the tidyverse
package, which is a collection of eight different packages (dplyr
, ggplot2
, tibble
, tidyr
, readr
, purrr
, stringr
, and forcats
). It is built to work directly
with data frames. The thinking behind it was largely inspired by the package
plyr
which has been in use for some time but suffered from being slow in some
cases.dplyr
addresses this by porting much of the computation to C++. An
additional feature is the ability to work with data stored directly in an
external database. The benefits of doing this are that the data can be managed
natively in a relational database, queries can be conducted on that database,
and only the results of the query returned.
This addresses a common problem with R in that all operations are conducted in memory and thus the amount of data you can work with is limited by available memory. The database connections essentially remove that limitation in that you can have a database that is over 100s of GB, conduct queries on it directly and pull back just what you need for analysis in R.
22.1.1 Loading .csv files in tidy style
The Tidyverse’s readr
package provides its own unique way of loading .csv files in to R using read_csv()
, which is similar to read.csv()
. read_csv()
allows users to load in their data faster, doesn’t create row names, and allows you to access non-standard variable names (ie. variables that start with numbers of contain spaces), and outputs your data on the R console in a tidier way. In short, it’s a much friendlier way of loading in potentially messy data.
Now let’s load our vcf .csv file using read_csv()
:
22.1.2 Taking a quick look at data frames
Similar to str()
, which comes built into R, glimpse()
is a dplyr
function that (as the name suggests) gives a glimpse of the data frame.
## Rows: 801
## Columns: 29
## $ sample_id <chr> "SRR2584863", "SRR2584863", "SRR2584863", "SRR2584863", …
## $ CHROM <chr> "CP000819.1", "CP000819.1", "CP000819.1", "CP000819.1", …
## $ POS <dbl> 9972, 263235, 281923, 433359, 473901, 648692, 1331794, 1…
## $ ID <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
## $ REF <chr> "T", "G", "G", "CTTTTTTT", "CCGC", "C", "C", "G", "ACAGC…
## $ ALT <chr> "G", "T", "T", "CTTTTTTTT", "CCGCGC", "T", "A", "A", "AC…
## $ QUAL <dbl> 91.0000, 85.0000, 217.0000, 64.0000, 228.0000, 210.0000,…
## $ FILTER <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
## $ INDEL <lgl> FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, TR…
## $ IDV <dbl> NA, NA, NA, 12, 9, NA, NA, NA, 2, 7, NA, NA, NA, NA, NA,…
## $ IMF <dbl> NA, NA, NA, 1.000000, 0.900000, NA, NA, NA, 0.666667, 1.…
## $ DP <dbl> 4, 6, 10, 12, 10, 10, 8, 11, 3, 7, 9, 20, 12, 19, 15, 10…
## $ VDB <dbl> 0.0257451, 0.0961330, 0.7740830, 0.4777040, 0.6595050, 0…
## $ RPB <dbl> NA, 1.000000, NA, NA, NA, NA, NA, NA, NA, NA, 0.900802, …
## $ MQB <dbl> NA, 1.0000000, NA, NA, NA, NA, NA, NA, NA, NA, 0.1501340…
## $ BQB <dbl> NA, 1.000000, NA, NA, NA, NA, NA, NA, NA, NA, 0.750668, …
## $ MQSB <dbl> NA, NA, 0.974597, 1.000000, 0.916482, 0.916482, 0.900802…
## $ SGB <dbl> -0.556411, -0.590765, -0.662043, -0.676189, -0.662043, -…
## $ MQ0F <dbl> 0.000000, 0.166667, 0.000000, 0.000000, 0.000000, 0.0000…
## $ ICB <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
## $ HOB <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
## $ AC <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ AN <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ DP4 <chr> "0,0,0,4", "0,1,0,5", "0,0,4,5", "0,1,3,8", "1,0,2,7", "…
## $ MQ <dbl> 60, 33, 60, 60, 60, 60, 60, 60, 60, 60, 25, 60, 10, 60, …
## $ Indiv <chr> "/home/dcuser/dc_workshop/results/bam/SRR2584863.aligned…
## $ gt_PL <dbl> 1210, 1120, 2470, 910, 2550, 2400, 2080, 2550, 11128, 19…
## $ gt_GT <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ gt_GT_alleles <chr> "G", "T", "T", "CTTTTTTTT", "CCGCGC", "T", "A", "A", "AC…
In the above output, we can already gather some information about variants
, such as the number of rows and columns, column names, type of vector in the columns, and the first few entries of each column. Although what we see is similar to outputs of str()
, this method gives a cleaner visual output.
22.1.3 Selecting columns and filtering rows
To select columns of a data frame, use select()
. The first argument to this function is the data frame (variants
), and the subsequent arguments are the columns to keep.
select(variants, sample_id, REF, ALT, DP)
## # A tibble: 801 × 4
## sample_id REF ALT DP
## <chr> <chr> <chr> <dbl>
## 1 SRR2584863 T G 4
## 2 SRR2584863 G T 6
## 3 SRR2584863 G T 10
## 4 SRR2584863 CTTTTTTT CTTTTTTTT 12
## 5 SRR2584863 CCGC CCGCGC 10
## 6 SRR2584863 C T 10
## 7 SRR2584863 C A 8
## 8 SRR2584863 G A 11
## 9 SRR2584863 ACAGCCAGCCAGCCAGCCAGCCAGCCAGCCAG ACAGCCAGCCAGCCAGCCAGCCAGCC… 3
## 10 SRR2584863 AT ATT 7
## # … with 791 more rows
To select all columns except certain ones, put a “-” in front of the variable to exclude it.
select(variants, -CHROM)
## # A tibble: 801 × 28
## sampl…¹ POS ID REF ALT QUAL FILTER INDEL IDV IMF DP VDB
## <chr> <dbl> <lgl> <chr> <chr> <dbl> <lgl> <lgl> <dbl> <dbl> <dbl> <dbl>
## 1 SRR258… 9.97e3 NA T G 91 NA FALSE NA NA 4 0.0257
## 2 SRR258… 2.63e5 NA G T 85 NA FALSE NA NA 6 0.0961
## 3 SRR258… 2.82e5 NA G T 217 NA FALSE NA NA 10 0.774
## 4 SRR258… 4.33e5 NA CTTT… CTTT… 64 NA TRUE 12 1 12 0.478
## 5 SRR258… 4.74e5 NA CCGC CCGC… 228 NA TRUE 9 0.9 10 0.660
## 6 SRR258… 6.49e5 NA C T 210 NA FALSE NA NA 10 0.268
## 7 SRR258… 1.33e6 NA C A 178 NA FALSE NA NA 8 0.624
## 8 SRR258… 1.73e6 NA G A 225 NA FALSE NA NA 11 0.992
## 9 SRR258… 2.10e6 NA ACAG… ACAG… 56 NA TRUE 2 0.667 3 0.902
## 10 SRR258… 2.33e6 NA AT ATT 167 NA TRUE 7 1 7 0.568
## # … with 791 more rows, 16 more variables: RPB <dbl>, MQB <dbl>, BQB <dbl>,
## # MQSB <dbl>, SGB <dbl>, MQ0F <dbl>, ICB <lgl>, HOB <lgl>, AC <dbl>,
## # AN <dbl>, DP4 <chr>, MQ <dbl>, Indiv <chr>, gt_PL <dbl>, gt_GT <dbl>,
## # gt_GT_alleles <chr>, and abbreviated variable name ¹sample_id
dplyr
also provides useful functions to select columns based on their names. For instance, ends_with()
allows you to select columns that ends with specific letters. For instance, if you wanted to select columns that end with the letter “B”:
select(variants, ends_with("B"))
## # A tibble: 801 × 8
## VDB RPB MQB BQB MQSB SGB ICB HOB
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <lgl> <lgl>
## 1 0.0257 NA NA NA NA -0.556 NA NA
## 2 0.0961 1 1 1 NA -0.591 NA NA
## 3 0.774 NA NA NA 0.975 -0.662 NA NA
## 4 0.478 NA NA NA 1 -0.676 NA NA
## 5 0.660 NA NA NA 0.916 -0.662 NA NA
## 6 0.268 NA NA NA 0.916 -0.670 NA NA
## 7 0.624 NA NA NA 0.901 -0.651 NA NA
## 8 0.992 NA NA NA 1.01 -0.670 NA NA
## 9 0.902 NA NA NA 1 -0.454 NA NA
## 10 0.568 NA NA NA 1.01 -0.617 NA NA
## # … with 791 more rows
22.2 Challenge 1
Create a table that contains all the columns with the letter “i” and column “POS”,
without columns “Indiv” and “FILTER”.
Hint: look at for a function called contains()
, which can be found in the help documentation for ends with we just covered (?ends_with
). Note that contains() is not case sensistive.
22.4 Alternative solution 1
To choose rows, use filter()
:
filter(variants, sample_id == "SRR2584863")
## # A tibble: 25 × 29
## sample…¹ CHROM POS ID REF ALT QUAL FILTER INDEL IDV IMF DP
## <chr> <chr> <dbl> <lgl> <chr> <chr> <dbl> <lgl> <lgl> <dbl> <dbl> <dbl>
## 1 SRR2584… CP00… 9.97e3 NA T G 91 NA FALSE NA NA 4
## 2 SRR2584… CP00… 2.63e5 NA G T 85 NA FALSE NA NA 6
## 3 SRR2584… CP00… 2.82e5 NA G T 217 NA FALSE NA NA 10
## 4 SRR2584… CP00… 4.33e5 NA CTTT… CTTT… 64 NA TRUE 12 1 12
## 5 SRR2584… CP00… 4.74e5 NA CCGC CCGC… 228 NA TRUE 9 0.9 10
## 6 SRR2584… CP00… 6.49e5 NA C T 210 NA FALSE NA NA 10
## 7 SRR2584… CP00… 1.33e6 NA C A 178 NA FALSE NA NA 8
## 8 SRR2584… CP00… 1.73e6 NA G A 225 NA FALSE NA NA 11
## 9 SRR2584… CP00… 2.10e6 NA ACAG… ACAG… 56 NA TRUE 2 0.667 3
## 10 SRR2584… CP00… 2.33e6 NA AT ATT 167 NA TRUE 7 1 7
## # … with 15 more rows, 17 more variables: VDB <dbl>, RPB <dbl>, MQB <dbl>,
## # BQB <dbl>, MQSB <dbl>, SGB <dbl>, MQ0F <dbl>, ICB <lgl>, HOB <lgl>,
## # AC <dbl>, AN <dbl>, DP4 <chr>, MQ <dbl>, Indiv <chr>, gt_PL <dbl>,
## # gt_GT <dbl>, gt_GT_alleles <chr>, and abbreviated variable name ¹sample_id
filter()
will keep all the rows that match the conditions that are provided. Here are a few examples:
# rows for which the reference genome has T or G
filter(variants, REF %in% c("T", "G")) %>% dim()
## [1] 340 29
# rows with QUAL values greater than or equal to 100
filter(variants, QUAL >= 100) %>% dim()
## [1] 666 29
# rows that have TRUE in the column INDEL
filter(variants, INDEL) %>% dim()
## [1] 101 29
# rows that don't have missing data in the IDV column
filter(variants, !is.na(IDV)) %>% dim()
## [1] 101 29
filter()
allows you to combine multiple conditions. You can separate them using a ,
as arguments to the function, they will be combined using the &
(AND) logical operator. If you need to use the |
(OR) logical operator, you can specify it explicitly:
# this is equivalent to:
# filter(variants, sample_id == "SRR2584863" & QUAL >= 100)
filter(variants, sample_id == "SRR2584863", QUAL >= 100)
## # A tibble: 19 × 29
## sample_id CHROM POS ID REF ALT QUAL FILTER INDEL IDV IMF DP
## <chr> <chr> <dbl> <lgl> <chr> <chr> <dbl> <lgl> <lgl> <dbl> <dbl> <dbl>
## 1 SRR25848… CP00… 2.82e5 NA G T 217 NA FALSE NA NA 10
## 2 SRR25848… CP00… 4.74e5 NA CCGC CCGC… 228 NA TRUE 9 0.9 10
## 3 SRR25848… CP00… 6.49e5 NA C T 210 NA FALSE NA NA 10
## 4 SRR25848… CP00… 1.33e6 NA C A 178 NA FALSE NA NA 8
## 5 SRR25848… CP00… 1.73e6 NA G A 225 NA FALSE NA NA 11
## 6 SRR25848… CP00… 2.33e6 NA AT ATT 167 NA TRUE 7 1 7
## 7 SRR25848… CP00… 2.41e6 NA A C 104 NA FALSE NA NA 9
## 8 SRR25848… CP00… 2.45e6 NA A C 225 NA FALSE NA NA 20
## 9 SRR25848… CP00… 2.67e6 NA A T 225 NA FALSE NA NA 19
## 10 SRR25848… CP00… 3.00e6 NA G A 225 NA FALSE NA NA 15
## 11 SRR25848… CP00… 3.34e6 NA A C 211 NA FALSE NA NA 10
## 12 SRR25848… CP00… 3.40e6 NA C A 225 NA FALSE NA NA 14
## 13 SRR25848… CP00… 3.48e6 NA A G 200 NA FALSE NA NA 9
## 14 SRR25848… CP00… 3.49e6 NA A C 225 NA FALSE NA NA 13
## 15 SRR25848… CP00… 3.91e6 NA G T 225 NA FALSE NA NA 10
## 16 SRR25848… CP00… 4.10e6 NA A G 225 NA FALSE NA NA 16
## 17 SRR25848… CP00… 4.20e6 NA A C 225 NA FALSE NA NA 11
## 18 SRR25848… CP00… 4.43e6 NA TGG T 228 NA TRUE 10 1 10
## 19 SRR25848… CP00… 4.62e6 NA A C 185 NA FALSE NA NA 9
## # … with 17 more variables: VDB <dbl>, RPB <dbl>, MQB <dbl>, BQB <dbl>,
## # MQSB <dbl>, SGB <dbl>, MQ0F <dbl>, ICB <lgl>, HOB <lgl>, AC <dbl>,
## # AN <dbl>, DP4 <chr>, MQ <dbl>, Indiv <chr>, gt_PL <dbl>, gt_GT <dbl>,
## # gt_GT_alleles <chr>
# using `|` logical operator
filter(variants, sample_id == "SRR2584863", (INDEL | QUAL >= 100))
## # A tibble: 22 × 29
## sample…¹ CHROM POS ID REF ALT QUAL FILTER INDEL IDV IMF DP
## <chr> <chr> <dbl> <lgl> <chr> <chr> <dbl> <lgl> <lgl> <dbl> <dbl> <dbl>
## 1 SRR2584… CP00… 2.82e5 NA G T 217 NA FALSE NA NA 10
## 2 SRR2584… CP00… 4.33e5 NA CTTT… CTTT… 64 NA TRUE 12 1 12
## 3 SRR2584… CP00… 4.74e5 NA CCGC CCGC… 228 NA TRUE 9 0.9 10
## 4 SRR2584… CP00… 6.49e5 NA C T 210 NA FALSE NA NA 10
## 5 SRR2584… CP00… 1.33e6 NA C A 178 NA FALSE NA NA 8
## 6 SRR2584… CP00… 1.73e6 NA G A 225 NA FALSE NA NA 11
## 7 SRR2584… CP00… 2.10e6 NA ACAG… ACAG… 56 NA TRUE 2 0.667 3
## 8 SRR2584… CP00… 2.33e6 NA AT ATT 167 NA TRUE 7 1 7
## 9 SRR2584… CP00… 2.41e6 NA A C 104 NA FALSE NA NA 9
## 10 SRR2584… CP00… 2.45e6 NA A C 225 NA FALSE NA NA 20
## # … with 12 more rows, 17 more variables: VDB <dbl>, RPB <dbl>, MQB <dbl>,
## # BQB <dbl>, MQSB <dbl>, SGB <dbl>, MQ0F <dbl>, ICB <lgl>, HOB <lgl>,
## # AC <dbl>, AN <dbl>, DP4 <chr>, MQ <dbl>, Indiv <chr>, gt_PL <dbl>,
## # gt_GT <dbl>, gt_GT_alleles <chr>, and abbreviated variable name ¹sample_id
22.5 Challenge 2
Select all the mutations that occurred between the positions 1e6 (one million) and 2e6 (included) that are not indels and have QUAL greater than 200.
22.6 Solution
22.6.1 Pipes
But what if you wanted to select and filter? We can do this with pipes. Pipes, are a fairly recent addition to R. Pipes let you
take the output of one function and send it directly to the next, which is
useful when you need to many things to the same data set. It was
possible to do this before pipes were added to R, but it was
much messier and more difficult. Pipes in R look like
%>%
and are made available via the magrittr
package, which is installed as
part of dplyr
. If you use RStudio, you can type the pipe with
Ctrl + Shift + M if you’re using a PC,
or Cmd + Shift + M if you’re using a Mac.
%>%
variants filter(sample_id == "SRR2584863") %>%
select(REF, ALT, DP)
## # A tibble: 25 × 3
## REF ALT DP
## <chr> <chr> <dbl>
## 1 T G 4
## 2 G T 6
## 3 G T 10
## 4 CTTTTTTT CTTTTTTTT 12
## 5 CCGC CCGCGC 10
## 6 C T 10
## 7 C A 8
## 8 G A 11
## 9 ACAGCCAGCCAGCCAGCCAGCCAGCCAGCCAG ACAGCCAGCCAGCCAGCCAGCCAGCCAGCCAGCCAGC… 3
## 10 AT ATT 7
## # … with 15 more rows
In the above code, we use the pipe to send the variants
dataset first through
filter()
, to keep rows where sample_id
matches a particular sample, and then through select()
to
keep only the REF
, ALT
, and DP
columns. Since %>%
takes
the object on its left and passes it as the first argument to the function on
its right, we don’t need to explicitly include the data frame as an argument
to the filter()
and select()
functions any more.
Some may find it helpful to read the pipe like the word “then”. For instance,
in the above example, we took the data frame variants
, then we filter
ed
for rows where sample_id
was SRR2584863, then we select
ed the REF
, ALT
, and DP
columns, then we showed only the first six rows.
The dplyr
functions by themselves are somewhat simple,
but by combining them into linear workflows with the pipe, we can accomplish
more complex manipulations of data frames.
If we want to create a new object with this smaller version of the data we can do so by assigning it a new name:
<- variants %>%
SRR2584863_variants filter(sample_id == "SRR2584863") %>%
select(REF, ALT, DP)
This new object includes all of the data from this sample. Let’s look at just the first six rows to confirm it’s what we want:
SRR2584863_variants
## # A tibble: 25 × 3
## REF ALT DP
## <chr> <chr> <dbl>
## 1 T G 4
## 2 G T 6
## 3 G T 10
## 4 CTTTTTTT CTTTTTTTT 12
## 5 CCGC CCGCGC 10
## 6 C T 10
## 7 C A 8
## 8 G A 11
## 9 ACAGCCAGCCAGCCAGCCAGCCAGCCAGCCAG ACAGCCAGCCAGCCAGCCAGCCAGCCAGCCAGCCAGC… 3
## 10 AT ATT 7
## # … with 15 more rows
Similar to head()
and tail()
functions, we can also look at the first or last six rows using tidyverse function slice()
. Slice is a more versatile function that allows users to specify a range to view:
%>% slice(1:6) SRR2584863_variants
## # A tibble: 6 × 3
## REF ALT DP
## <chr> <chr> <dbl>
## 1 T G 4
## 2 G T 6
## 3 G T 10
## 4 CTTTTTTT CTTTTTTTT 12
## 5 CCGC CCGCGC 10
## 6 C T 10
%>% slice(10:25) SRR2584863_variants
## # A tibble: 16 × 3
## REF ALT DP
## <chr> <chr> <dbl>
## 1 AT ATT 7
## 2 A C 9
## 3 A C 20
## 4 G T 12
## 5 A T 19
## 6 G A 15
## 7 A C 10
## 8 C A 14
## 9 A G 9
## 10 A C 13
## 11 A AC 2
## 12 G T 10
## 13 A G 16
## 14 A C 11
## 15 TGG T 10
## 16 A C 9
22.7 Exercise 1: Pipe and filter
Starting with the variants
data frame, use pipes to subset the data
to include only observations from SRR2584863 sample,
where the fi3ltered depth (DP) is at least 10.
Shwoing only 5th through 11th rows of columns REF
, ALT
, and POS
.
22.8 Solution Ex 1
22.8.1 Mutate
Frequently you’ll want to create new columns based on the values in existing
columns, for example to do unit conversions or find the ratio of values in two
columns. For this we’ll use the dplyr
function mutate()
.
We have a column titled “QUAL”. This is a Phred-scaled confidence score that a polymorphism exists at this position given the sequencing data. Lower QUAL scores indicate low probability of a polymorphism existing at that site. We can convert the confidence value QUAL to a probability value according to the formula:
Probability = 1- 10 ^ -(QUAL/10)
Let’s add a column (POLPROB
) to our variants
data frame that shows
the probability of a polymorphism at that site given the data.
%>%
variants mutate(POLPROB = 1 - (10 ^ -(QUAL/10)))
## # A tibble: 801 × 30
## sample…¹ CHROM POS ID REF ALT QUAL FILTER INDEL IDV IMF DP
## <chr> <chr> <dbl> <lgl> <chr> <chr> <dbl> <lgl> <lgl> <dbl> <dbl> <dbl>
## 1 SRR2584… CP00… 9.97e3 NA T G 91 NA FALSE NA NA 4
## 2 SRR2584… CP00… 2.63e5 NA G T 85 NA FALSE NA NA 6
## 3 SRR2584… CP00… 2.82e5 NA G T 217 NA FALSE NA NA 10
## 4 SRR2584… CP00… 4.33e5 NA CTTT… CTTT… 64 NA TRUE 12 1 12
## 5 SRR2584… CP00… 4.74e5 NA CCGC CCGC… 228 NA TRUE 9 0.9 10
## 6 SRR2584… CP00… 6.49e5 NA C T 210 NA FALSE NA NA 10
## 7 SRR2584… CP00… 1.33e6 NA C A 178 NA FALSE NA NA 8
## 8 SRR2584… CP00… 1.73e6 NA G A 225 NA FALSE NA NA 11
## 9 SRR2584… CP00… 2.10e6 NA ACAG… ACAG… 56 NA TRUE 2 0.667 3
## 10 SRR2584… CP00… 2.33e6 NA AT ATT 167 NA TRUE 7 1 7
## # … with 791 more rows, 18 more variables: VDB <dbl>, RPB <dbl>, MQB <dbl>,
## # BQB <dbl>, MQSB <dbl>, SGB <dbl>, MQ0F <dbl>, ICB <lgl>, HOB <lgl>,
## # AC <dbl>, AN <dbl>, DP4 <chr>, MQ <dbl>, Indiv <chr>, gt_PL <dbl>,
## # gt_GT <dbl>, gt_GT_alleles <chr>, POLPROB <dbl>, and abbreviated variable
## # name ¹sample_id
22.9 Exercise 2
There are a lot of columns in our dataset, so let’s just look at the
sample_id
, POS
, QUAL
, and POLPROB
columns for now. Add a
line to the above code to only show those columns.
22.10 Solution Ex2
22.10.1 group_by() and summarize() functions
Many data analysis tasks can be approached using the “split-apply-combine”
paradigm: split the data into groups, apply some analysis to each group, and
then combine the results. dplyr
makes this very easy through the use of the
group_by()
function, which splits the data into groups. When the data is
grouped in this way summarize()
can be used to collapse each group into
a single-row summary. summarize()
does this by applying an aggregating
or summary function to each group. For example, if we wanted to group
by sample_id and find the number of rows of data for each
sample, we would do:
%>%
variants group_by(sample_id) %>%
summarize(n())
## # A tibble: 3 × 2
## sample_id `n()`
## <chr> <int>
## 1 SRR2584863 25
## 2 SRR2584866 766
## 3 SRR2589044 10
It can be a bit tricky at first, but we can imagine physically splitting the data frame by groups and applying a certain function to summarize the data.
Here the summary function used was n()
to find the count for each
group. Since this is a quite a common operation, there is a simpler method
called tally()
:
%>%
variants group_by(ALT) %>%
tally()
## # A tibble: 57 × 2
## ALT n
## <chr> <int>
## 1 A 211
## 2 AC 2
## 3 ACAGCCAGCCAGCCAGCCAGCCAGCCAGCCAGCCAG 1
## 4 ACAGCCAGCCAGCCAGCCAGCCAGCCAGCCAGCCAGCCAGCCAGCCAGCCAGCCAG 1
## 5 ACCCCC 2
## 6 ACCCCCCCC 2
## 7 AGCGCGCGCG 1
## 8 AGG 1
## 9 AGGGGG 2
## 10 AGGGGGG 2
## # … with 47 more rows
To show that there are many ways to achieve the same results, there is another way to approach this, which bypasses group_by()
using the function count()
:
%>%
variants count(ALT)
## # A tibble: 57 × 2
## ALT n
## <chr> <int>
## 1 A 211
## 2 AC 2
## 3 ACAGCCAGCCAGCCAGCCAGCCAGCCAGCCAGCCAG 1
## 4 ACAGCCAGCCAGCCAGCCAGCCAGCCAGCCAGCCAGCCAGCCAGCCAGCCAGCCAG 1
## 5 ACCCCC 2
## 6 ACCCCCCCC 2
## 7 AGCGCGCGCG 1
## 8 AGG 1
## 9 AGGGGG 2
## 10 AGGGGGG 2
## # … with 47 more rows
22.12 Solution 3
%>%
variants count(sample_id)
## # A tibble: 3 × 2
## sample_id n
## <chr> <int>
## 1 SRR2584863 25
## 2 SRR2584866 766
## 3 SRR2589044 10
We can also apply many other functions to individual columns to get other
summary statistics. For example,we can use built-in functions like mean()
,
median()
, min()
, and max()
. These are called “built-in functions” because
they come with R and don’t require that you install any additional packages.
By default, all R functions operating on vectors that contains missing data will return NA.
It’s a way to make sure that users know they have missing data, and make a
conscious decision on how to deal with it. When dealing with simple statistics
like the mean, the easiest way to ignore NA
(the missing data) is
to use na.rm = TRUE
(rm
stands for remove).
So to view the mean, median, maximum, and minimum filtered depth (DP
) for each sample:
%>%
variants group_by(sample_id) %>%
summarize(
mean_DP = mean(DP),
median_DP = median(DP),
min_DP = min(DP),
max_DP = max(DP))
## # A tibble: 3 × 5
## sample_id mean_DP median_DP min_DP max_DP
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 SRR2584863 10.4 10 2 20
## 2 SRR2584866 10.6 10 2 79
## 3 SRR2589044 9.3 9.5 3 16
22.12.1 Reshaping data frames
It can sometimes be useful to transform the “long” tidy format, into the wide format. This transformation can be done with the pivot_wider()
function provided by the tidyr
package (also part of the tidyverse
).
pivot_wider()
takes a data frame as the first argument, and two arguments: the column name that will become the columns and the column name that will become the cells in the wide data.
<- variants %>%
variants_wide group_by(sample_id, CHROM) %>%
summarize(mean_DP = mean(DP)) %>%
pivot_wider(names_from = sample_id, values_from = mean_DP)
## `summarise()` has grouped output by 'sample_id'. You can override using the
## `.groups` argument.
variants_wide
## # A tibble: 1 × 4
## CHROM SRR2584863 SRR2584866 SRR2589044
## <chr> <dbl> <dbl> <dbl>
## 1 CP000819.1 10.4 10.6 9.3
The opposite operation of pivot_wider()
is taken care by pivot_longer()
. We specify the names of the new columns, and here add -CHROM
as this column shouldn’t be affected by the reshaping:
%>%
variants_wide pivot_longer(-CHROM, names_to = "sample_id", values_to = "mean_DP")
## # A tibble: 3 × 3
## CHROM sample_id mean_DP
## <chr> <chr> <dbl>
## 1 CP000819.1 SRR2584863 10.4
## 2 CP000819.1 SRR2584866 10.6
## 3 CP000819.1 SRR2589044 9.3
The figure was adapted from the Software Carpentry lesson, R for Reproducible Scientific Analysis↩︎