2 Import Data

We import the data into the workspace. For a higher flexibility, we convert the data into a tibble. The tibble is a structure that helps us with automatically converting the columns into a meaningful and cleaner format, which in our case, given a huge data-set, provides more benefits than a regular dataframe.

data <- read_csv("/Users/andriimyronenko/Desktop/University/2 semester/Data Storytelling in Finance/Final Project/FMFM2019_seminar.csv")
#data <- read_csv("/Users/katerynaholionko/Desktop/Uni/Data Storytelling in Finance/FMFM2019_seminar.csv")
#data <- read_csv("C:/Users/Vo Cao Tuan/Desktop/Data storytelling/Data_Seminar_2022/FMFM2019_seminar.csv")
data <- as_tibble(data)

We can check manually, whether the import was successful by taking a look at the whole data itself by following command:

knitr::kable(
  head(data[, 1:8], 10), booktabs = TRUE,
  caption = "A table of the first 10 rows of the data set"
)
Table 2.1: A table of the first 10 rows of the data set
Enterprise Flag Record Number US Postal State Code Metropolitan Statistical Area (MSA) Code County - 2010 Census Census Tract - 2010 Census 2010 Census Tract - Percent Minority 2010 Census Tract - Median Income
1 635011 36 40380 055 014203 21.66 64456
2 3140543 36 15380 029 014208 4.12 114696
1 485568 19 11180 169 010300 6.16 82969
1 1577326 53 99999 045 961200 11.27 77500
2 3333736 16 14260 027 020901 18.22 63436
2 2768127 45 17900 055 970602 31.51 43448
2 2866243 18 26900 059 410800 3.52 95699
2 3159671 39 17140 025 041406 4.90 113000
1 967893 04 38060 013 619400 45.16 48490
1 1805526 17 16980 111 871202 28.02 79701