6.18 The Logistic Model: Predictions
- Estimation in R:
- R output shows log odds: e.g., a one-unit increase in
age
is associated with an increase in the log odds ofis_recid
by-0.05
units (annoying interpretation)
- R output shows log odds: e.g., a one-unit increase in
fit <- glm(as.factor(is_recid) ~ age + priors_count,
family = binomial,
data = data.train)
summary(fit) # Summarize results
##
## Call:
## glm(formula = as.factor(is_recid) ~ age + priors_count, family = binomial,
## data = data.train)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.0872 -1.0680 -0.5689 1.0953 2.6065
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.101001 0.097597 11.28 <2e-16 ***
## age -0.049831 0.002861 -17.42 <2e-16 ***
## priors_count 0.159982 0.008236 19.43 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 6921.3 on 4999 degrees of freedom
## Residual deviance: 6186.8 on 4997 degrees of freedom
## AIC: 6192.8
##
## Number of Fisher Scoring iterations: 4
- Prediction in R:
- Once coefficients have been estimated, it is a simple matter to compute the probability of outcome for values of our predictors (James et al. 2013, 134)
predict()
: can be used to predict probability that person will recidivate, given values of the predictorstype="response"
: tell R to output probabilities of form P(Y=1|X) (as opposed to other information such as the logit)
data_predict = data.frame(age = c(30, 30, 50),
priors_count = c(2, 4, 2))
data_predict$Pr <- predict(fit, newdata = data_predict, type = "response")
data_predict
age | priors_count | Pr |
---|---|---|
30 | 2 | 0.4815163 |
30 | 4 | 0.5611905 |
50 | 2 | 0.2552909 |
- Q: How would you interpret these values?
- Source: James et al. (2013 Chap. 4.3.3, 4.6.2)
References
James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An Introduction to Statistical Learning: With Applications in R. Springer Texts in Statistics. Springer.