6 5-FOLDS FOR MULTIVARIATE ADAPTIVE REGRESSION SPLINES

See Github for code JohnAtMill

Average.AUC.mars<-print(paste("Average of AUC is", mean(err_vec1)))
## [1] "Average of AUC is 0.932625188403815"
Average.Misclas.mars<-print(paste("Average of Missclassification is ", mean(missclass.rate)))
## [1] "Average of Missclassification is  0.0417628911488818"
summary(fit.mars)
## Call: earth(formula=factor(Category)~., data=train.v,
##             glm=list(family=binomial(link="logit")), degree=3)
## 
## GLM coefficients
##                                                   1
## (Intercept)                               6.6029615
## h(16.9-ALT)                               0.5295046
## h(80-AST)                                -0.1431084
## h(CREA-64)                                0.0049164
## h(146.3-GGT)                             -0.0399998
## h(65.3-ALP) * h(ALT-16.9)                 0.0107686
## h(ALP-65.3) * h(ALT-16.9)                 0.0016820
## h(ALT-16.9) * h(14-BIL)                  -0.0215858
## h(ALT-16.9) * h(PROT-78.5)                0.0234928
## h(ALT-16.9) * h(78.5-PROT)               -0.0140240
## h(46.9-AST) * h(146.3-GGT)               -0.0000683
## h(65.3-ALP) * h(ALT-16.9) * h(CREA-63)   -0.0002287
## h(65.3-ALP) * h(ALT-16.9) * h(63-CREA)   -0.0013877
## h(43.7-ALP) * h(80-AST) * h(PROT-70.4)    0.0027456
## h(15.8-ALT) * h(46.9-AST) * h(146.3-GGT) -0.0003098
## h(ALT-15.8) * h(46.9-AST) * h(146.3-GGT)  0.0000040
## 
## GLM (family binomial, link logit):
##  nulldev  df       dev  df   devratio     AIC iters converged
##   341.02 476   26.4952 461      0.922    58.5    10         1
## 
## Earth selected 16 of 25 terms, and 7 of 12 predictors
## Termination condition: Reached nk 25
## Importance: AST, ALT, ALP, PROT, BIL, GGT, CREA, Age-unused, Sexm-unused, ...
## Number of terms at each degree of interaction: 1 4 6 5
## Earth GCV 0.01641433    RSS 6.616739    GRSq 0.8397633    RSq 0.8640162
vip(fit.mars, num_features = 24) + ggtitle("GCV")

From the variable importance plot we can see that,AST,ALT,PROT in descending order are important variables by MARS.