Sec 3 Base Definition

3.1 Variance, Covariance, Correlation

<Def> Covariance

Cov(Xs,Xt)=E[(Xsμs)(Xtμt)] <Def> Correlation

Corr=Cov(X,Y)Var(X)Var(Y)

  • Variance of linear combination

Var(a0+pj=1ajXj)=pj=1pk=1ajakCov(Xj,Xk)

  • Covariance of linear combination

Cov(a0+pj=1ajXj,b0+qk=1bkYk)=pj=1qk=1ajbkCov(Xj,Yk)

3.2 Uncorrelated, Independent

  • r.v. with zero correlation uncorrelated
  • independent + finite variance uncorrelated
  • uncorrelated independent

<Def> uncorrelated

Corr(X,Y)=0

<Def> independent

P(X\cap Y)=P(X)P(Y)

3.3 Autocovariance, Autocorrelation, Cross-covariance, Cross-correlation

3.3.1 Population

<Def> autocovariance function

Cov(X_s, X_t)= \gamma_X(s,t)=E[(X_s-\mu_s)(X_t-\mu_t)] measuring\:time: s,t=t_1,t_2,...

<Def> autocorrelation function (ACF)

\rho(s,t)=\frac{\gamma(s,t)}{\sqrt{\gamma(s,s)\gamma(t,t)}}=\frac{Cov(X_s,X_t)}{\sqrt{Var(X_s)Var(X_t)}} <Def> cross-covariance function

\gamma_{XY}(s,t)=E[(X_s-\mu_{X_s})(Y_t-\mu_{Y_t})]

<Def> cross-correlation function (CCF)

\rho_{XY}(s,t)=\frac{\gamma_{XY}(s,t)}{\sqrt{\gamma_X(s,s)\gamma_Y(t,t)}}=\frac{Cov(X_s,Y_t)}{\sqrt{Var(X_s)Var(Y_t)}}

Covariance: different covatiate Autocovariance: same variable but at different time

3.3.2 Stationary Case

times series \{X_t\} is stationary

    <Def> autocovariance function \gamma(h)=Cov(X_t, X_{t+h})\\ \color{red}{\gamma(0)=Var(X_t)}

    <Def> autocorrelation function (ACF) \rho(h)=Corr(X_t, X_{t+h})=\frac{Cov(X_t, X_{t+h})}{\sqrt{Var(X_t)Var(X_{t+h})}}=\frac{\gamma(h)}{\gamma(0)}
two times series \{X_t\},\{Y_t\} are jointly stationary

    <Def> cross-covariance function \gamma_{XY}(h)=Cov(X_t, Y_{t+h})=E[(X_t-\mu_{X})(Y_{t+h}-\mu_{Y})]\\ \text{ is a function only of lag h}

    <Def> cross-correlation function (CCF) \rho_{XY}(h)=Corr(X_t, Y_{t+h})=\frac{\gamma_{XY}(h)}{\sqrt{\gamma_X(0)\gamma_Y(0)}}

3.3.3 Sample

<Def> sample autocovariance function \hat\gamma(h)=n^{-1}\sum_{t=1}^{n-h}(X_t-\bar X)(X_{t+h}-\bar X)

<Def> sample autocorrelation function (ACF) \hat\rho(h)=\frac{\hat\gamma(h)}{\hat\gamma(0)}

<Prop> large sample distribution of ACF \hat\rho_X(h)\sim N(0,\frac{1}{\sqrt{n}})\\ \text{ if }X_t\text{ is }WN\text{ and n large} H_0: \text{follow WN assumption}

  • accept WN assumption, if all ACF are within \pm1.96\times\frac{1}{\sqrt n}
  • see the follow example 3.1
acf(diff(gtemp), 48)
The ACF plot

Figure 3.1: The ACF plot

<Def> sample cross-covariance function \hat\gamma_{XY}(h)=n^{-1}\sum_{t=1}^{n-h}(X_t-\bar X)(Y_{t+h}-\bar Y)

<Def> sample cross-correlation function (CCF) \hat\rho_{XY}(h)=\frac{\hat\gamma_{XY}(h)}{\sqrt{\hat\gamma_X(0)\hat\gamma_Y(0)}}

<Prop> large sample distribution of CCF \hat\rho_{XY}(h)\sim N(0,\frac1n)\\ \text{ if at least one process is white independent noise}