Sec 3 Base Definition
3.1 Variance, Covariance, Correlation
<Def> Covariance
Cov(Xs,Xt)=E[(Xs−μs)(Xt−μt)] <Def> Correlation
Corr=Cov(X,Y)√Var(X)Var(Y)
- Variance of linear combination
Var(a0+p∑j=1ajXj)=p∑j=1p∑k=1ajak⋅Cov(Xj,Xk)
- Covariance of linear combination
Cov(a0+p∑j=1ajXj,b0+q∑k=1bkYk)=p∑j=1q∑k=1ajbk⋅Cov(Xj,Yk)
3.3 Autocovariance, Autocorrelation, Cross-covariance, Cross-correlation
3.3.1 Population
<Def> autocovariance function
Cov(X_s, X_t)= \gamma_X(s,t)=E[(X_s-\mu_s)(X_t-\mu_t)] measuring\:time: s,t=t_1,t_2,...
<Def> autocorrelation function (ACF)
\rho(s,t)=\frac{\gamma(s,t)}{\sqrt{\gamma(s,s)\gamma(t,t)}}=\frac{Cov(X_s,X_t)}{\sqrt{Var(X_s)Var(X_t)}} <Def> cross-covariance function
\gamma_{XY}(s,t)=E[(X_s-\mu_{X_s})(Y_t-\mu_{Y_t})]
<Def> cross-correlation function (CCF)
\rho_{XY}(s,t)=\frac{\gamma_{XY}(s,t)}{\sqrt{\gamma_X(s,s)\gamma_Y(t,t)}}=\frac{Cov(X_s,Y_t)}{\sqrt{Var(X_s)Var(Y_t)}}
Covariance: different covatiate Autocovariance: same variable but at different time
3.3.2 Stationary Case
times series \{X_t\} is stationary<Def> autocovariance function \gamma(h)=Cov(X_t, X_{t+h})\\ \color{red}{\gamma(0)=Var(X_t)}
<Def> autocorrelation function (ACF) \rho(h)=Corr(X_t, X_{t+h})=\frac{Cov(X_t, X_{t+h})}{\sqrt{Var(X_t)Var(X_{t+h})}}=\frac{\gamma(h)}{\gamma(0)}<Def> cross-covariance function \gamma_{XY}(h)=Cov(X_t, Y_{t+h})=E[(X_t-\mu_{X})(Y_{t+h}-\mu_{Y})]\\ \text{ is a function only of lag h}
<Def> cross-correlation function (CCF) \rho_{XY}(h)=Corr(X_t, Y_{t+h})=\frac{\gamma_{XY}(h)}{\sqrt{\gamma_X(0)\gamma_Y(0)}}3.3.3 Sample
<Def> sample autocovariance function \hat\gamma(h)=n^{-1}\sum_{t=1}^{n-h}(X_t-\bar X)(X_{t+h}-\bar X)
<Def> sample autocorrelation function (ACF) \hat\rho(h)=\frac{\hat\gamma(h)}{\hat\gamma(0)}
<Prop> large sample distribution of ACF \hat\rho_X(h)\sim N(0,\frac{1}{\sqrt{n}})\\ \text{ if }X_t\text{ is }WN\text{ and n large} H_0: \text{follow WN assumption}
- accept WN assumption, if all ACF are within \pm1.96\times\frac{1}{\sqrt n}
- see the follow example 3.1

Figure 3.1: The ACF plot
<Def> sample cross-covariance function \hat\gamma_{XY}(h)=n^{-1}\sum_{t=1}^{n-h}(X_t-\bar X)(Y_{t+h}-\bar Y)
<Def> sample cross-correlation function (CCF) \hat\rho_{XY}(h)=\frac{\hat\gamma_{XY}(h)}{\sqrt{\hat\gamma_X(0)\hat\gamma_Y(0)}}
<Prop> large sample distribution of CCF \hat\rho_{XY}(h)\sim N(0,\frac1n)\\ \text{ if at least one process is white independent noise}