10 Exploratory Data Analysis at Scale

Wk4_Data <- 'Week_4/DATA'

library('kableExtra')
library('tidyverse')
#> ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
#> ✔ ggplot2 3.4.0      ✔ purrr   1.0.0 
#> ✔ tibble  3.1.8      ✔ dplyr   1.0.10
#> ✔ tidyr   1.2.1      ✔ stringr 1.5.0 
#> ✔ readr   2.1.3      ✔ forcats 0.5.2 
#> ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
#> ✖ dplyr::filter()     masks stats::filter()
#> ✖ dplyr::group_rows() masks kableExtra::group_rows()
#> ✖ dplyr::lag()        masks stats::lag()

A_DATA_2 <- readRDS(file.path(Wk4_Data,'A_DATA_2.RDS'))

A_DATA_TBL_2.t_ks_result.furrr <- readRDS(file.path(Wk4_Data,'A_DATA_TBL_2.t_ks_result.furrr.RDS'))

FEATURE_TYPE <- readRDS(file.path(Wk4_Data,'FEATURE_TYPE.RDS'))

numeric_features <- FEATURE_TYPE$numeric_features
categorical_features <- FEATURE_TYPE$categorical_features

\(~\)


\(~\)

10.1 Investigate Results

We can make make our results scroll-able if we use kableExtra:

A_DATA_TBL_2.t_ks_result.furrr %>%
  select(Feature, mean_diff_est , ttest.pvalue, kstest.pvalue, N_Target, mean_Target, sd_Target, N_Control, mean_Control, sd_Control) %>%
  mutate(across(where(is.numeric), round, 3))  %>%
  kableExtra::kbl() %>% # kableExtra from here down
  kable_paper() %>%
  scroll_box(width = "100%", height = "200px")
Feature mean_diff_est ttest.pvalue kstest.pvalue N_Target mean_Target sd_Target N_Control mean_Control sd_Control
PHAFSTHR 0.403 0.000 0.000 2002 11.331 3.756 17227 10.928 3.542
BPXML1 15.089 0.000 0.000 6212 160.122 26.533 66292 145.032 22.621
PHAFSTMN 0.210 0.607 0.953 2002 29.980 17.260 17227 29.770 17.302
BPXDI4 0.966 0.223 0.039 665 67.738 19.806 7687 66.772 16.984
BPXPLS -0.084 0.625 0.286 6246 74.368 13.046 66470 74.452 12.639
BPXDI1 2.029 0.000 0.000 5749 68.184 14.977 61757 66.156 14.895
BPXDI3 1.496 0.000 0.000 5740 67.521 15.235 60517 66.024 15.184
BPXDI2 1.964 0.000 0.000 5810 68.058 14.962 61041 66.094 14.996
BPXSY4 16.500 0.000 0.000 665 135.919 23.407 7687 119.419 20.331
BPXCHR -3.384 0.519 0.817 15 96.933 19.783 15152 100.317 17.076
BPXSY3 13.999 0.000 0.000 5740 131.256 20.739 60518 117.258 18.055
Age 31.486 0.000 0.000 6807 61.527 14.780 88740 30.041 23.635
BPXSY2 14.419 0.000 0.000 5810 132.280 21.146 61041 117.860 18.455
BPXSY1 14.842 0.000 0.000 5749 133.321 21.342 61757 118.478 18.858
BPXDAR 0.835 0.069 0.016 1356 66.953 16.481 20711 66.118 14.444
BMXHEAD NaN NA NA 0 NaN NA 0 NaN NA
LBDHDD -5.268 0.000 0.000 4704 48.553 14.488 45568 53.821 15.288
LBDHDDSI -0.136 0.000 0.000 4704 1.256 0.375 45568 1.392 0.395
BPXSAR 16.998 0.000 0.000 1356 134.541 22.248 20711 117.542 19.343
LBXAPB 7.345 0.000 0.001 228 101.175 28.270 2837 93.830 28.515
LBDAPBSI 0.073 0.000 0.001 228 1.012 0.283 2837 0.938 0.285
LBDLDLM -8.538 0.000 0.000 381 100.360 38.142 2167 108.898 35.153
LBDLDMSI -0.221 0.000 0.000 381 2.595 0.986 2167 2.816 0.909
LBDLDLN -10.763 0.000 0.000 385 99.764 38.508 2182 110.527 35.851
LBDLDNSI -0.278 0.000 0.000 385 2.580 0.996 2182 2.858 0.927
BMXSAD3 3.322 0.000 0.000 126 25.225 4.049 960 21.904 5.050
BMXSAD4 3.312 0.000 0.000 126 25.214 3.995 960 21.903 5.053
LBDLDL -9.006 0.000 0.000 2180 100.390 36.569 18145 109.396 35.225
LBDLDLSI -0.233 0.000 0.000 2180 2.596 0.946 18145 2.829 0.911
BMXSAD1 5.005 0.000 0.000 1923 25.616 4.551 18661 20.610 4.732
BMXSAD2 5.018 0.000 0.000 1923 25.612 4.570 18661 20.594 4.741
BMDAVSAD 5.005 0.000 0.000 1923 25.624 4.558 18661 20.619 4.734
BMXLEG -1.397 0.000 0.000 5857 37.535 4.280 65870 38.932 4.238
LBXTC -1.827 0.009 0.000 4704 181.063 46.312 45567 182.890 41.105
LBDTCSI -0.047 0.009 0.000 4704 4.682 1.198 45567 4.730 1.063
LBXGLU 60.692 0.000 0.000 2352 160.710 68.044 18897 100.018 18.194
BMXCALF 1.379 0.000 0.000 1811 38.211 4.791 27783 36.832 5.016
BMXARML 4.123 0.000 0.000 6057 37.580 2.993 81107 33.457 6.720
BMXSUB 7.916 0.000 0.000 2175 23.325 7.689 44885 15.409 8.668
URXUCR2 -42.900 0.000 0.000 636 94.338 56.189 6600 137.238 73.324
URDUCR2S -3792.372 0.000 0.000 636 8339.484 4967.065 6600 12131.855 6481.851
BMXTRI 4.759 0.000 0.000 2843 21.026 8.490 48206 16.267 8.204
BMXARMC 6.334 0.000 0.000 6054 34.672 5.408 81091 28.338 7.442
Poverty_Income_Ratio -0.072 0.000 0.000 6059 2.225 1.502 80794 2.296 1.610
BMAEXLEN 22.610 0.000 0.000 450 286.258 93.019 8321 263.647 79.125
URXUCR -11.888 0.000 0.000 4840 113.749 71.374 49920 125.637 81.455
BMXTHICR 1.186 0.000 0.000 1742 52.439 7.866 27456 51.253 8.012
LBDGLUSI 3.369 0.000 0.000 2352 8.921 3.777 18897 5.552 1.010
LBXTR 43.659 0.000 0.000 2260 157.202 159.082 18367 113.543 93.182
LBDTRSI 0.493 0.000 0.000 2260 1.775 1.796 18367 1.282 1.052
BMXRECUM -0.479 0.912 0.944 5 89.640 9.141 7205 90.119 8.600
URXUMA2 39.630 0.000 0.000 636 55.181 209.726 6600 15.550 77.535
URDUMA2S 39.630 0.000 0.000 636 55.181 209.726 6600 15.550 77.535
BMXHIP 6.579 0.000 0.000 773 110.892 15.731 5098 104.313 14.460
URXCRS -1050.899 0.000 0.000 4840 10055.402 6309.499 49920 11106.301 7200.588
BMXHT 10.458 0.000 0.000 6322 165.672 10.725 80726 155.214 23.879
BMXWAIST 23.277 0.000 0.000 5913 108.049 16.341 77653 84.773 21.414
PEASCTM1 149.680 0.000 0.000 4674 711.582 200.877 67355 561.902 267.205
URDACT2 88.039 0.000 0.000 636 102.720 580.014 6600 14.680 93.315
BMXWT 25.929 0.000 0.000 6306 88.116 23.925 83464 62.187 29.774
URXUMA 141.019 0.000 0.000 4840 172.300 793.228 49919 31.281 200.764
URXUMS 141.019 0.000 0.000 4840 172.300 793.228 49919 31.281 200.764
LBXIN 7.997 0.000 0.000 2284 21.110 35.946 18490 13.113 12.496
LBDINSI 47.984 0.000 0.000 2284 126.662 215.673 18490 78.678 74.976
BMXBMI 7.043 0.000 0.000 6268 31.948 7.566 80343 24.905 7.355
URDACT 141.427 0.000 0.000 3660 171.371 719.616 35584 29.944 532.255
WTSAF2YR -19537.782 0.000 0.000 2474 61002.970 68801.008 20100 80540.753 82941.640

We can make a corresponding plot to go along with our table:

plot <- A_DATA_TBL_2.t_ks_result.furrr %>%
  mutate(Feature_Prevalence_Pct = round(N_Target/(N_Target+N_Control)*100,2)) %>%
  ggplot(aes(x=round(ttest.pvalue,4) , y= round(kstest.pvalue,4), color = Feature, size = Feature_Prevalence_Pct)) +
  geom_point() + 
  theme(legend.position='none') 

plot
#> Warning: Removed 1 rows containing missing values (`geom_point()`).

We can also make our plot interactive with plotly::ggplotly

plotly::ggplotly(plot)

\(~\)


\(~\)

10.2 tableby

The arsenal package also contains other helpful functions in terms of Exploratory Data Analysis:

library('arsenal')
library('knitr')


A_DATA_2 %>%
  head()
#> # A tibble: 6 × 133
#>    SEQN DIABE…¹ AGE_A…²   Age Gender Race  USAF  Birth…³ Grade…⁴ Grade…⁵ Marit…⁶
#>   <dbl>   <dbl>   <dbl> <dbl> <chr>  <chr> <chr> <chr>   <chr>   <chr>   <chr>  
#> 1     1       0      NA     2 Female Black <NA>  USA     <NA>    <NA>    <NA>   
#> 2     2       0      NA    77 Male   White Yes   USA     <NA>    Colleg… <NA>   
#> 3     3       0      NA    10 Female White <NA>  <NA>    3rd gr… <NA>    <NA>   
#> 4     4       0      NA     1 Male   Black <NA>  USA     <NA>    <NA>    <NA>   
#> 5     5       0      NA    49 Male   White Yes   USA     <NA>    Colleg… Married
#> 6     6       0      NA    19 Female Other No    USA     More t… <NA>    Never …
#> # … with 122 more variables: Pregnant <chr>, Household_Icome <chr>,
#> #   Family_Income <chr>, Poverty_Income_Ratio <dbl>, yr_range <chr>,
#> #   PEASCST1 <dbl>, PEASCTM1 <dbl>, PEASCCT1 <dbl>, BPXCHR <dbl>,
#> #   BPQ150A <dbl>, BPQ150B <dbl>, BPQ150C <dbl>, BPQ150D <dbl>, BPAARM <dbl>,
#> #   BPACSZ <dbl>, BPXPLS <dbl>, BPXDB <dbl>, BPXPULS <dbl>, BPXPTY <dbl>,
#> #   BPXML1 <dbl>, BPXSY1 <dbl>, BPXDI1 <dbl>, BPAEN1 <dbl>, BPXSY2 <dbl>,
#> #   BPXDI2 <dbl>, BPAEN2 <dbl>, BPXSY3 <dbl>, BPXDI3 <dbl>, BPAEN3 <dbl>, …

We can perform many of the analyses we did in the last part easily with the tableby function

tableby(DIABETES_char ~ Age + Gender + Race + Marital_Status + Grade_Level + LBXGLU,
        data = A_DATA_2 %>%
          mutate(DIABETES_char = case_when(DIABETES == 1 ~ "Diabetics", 
                                   DIABETES == 0 ~ "Non-Diabetics",
                                   is.na(DIABETES) ~ "Unknown Diabetic Status"))) %>%
  summary(pfootnote=TRUE)
Diabetics (N=6807) Non-Diabetics (N=88740) Unknown Diabetic Status (N=5769) Total (N=101316) p value
Age < 0.0011
   Mean (SD) 61.527 (14.780) 30.041 (23.635) 11.989 (24.525) 31.128 (24.943)
   Range 1.000 - 85.000 1.000 - 85.000 0.000 - 85.000 0.000 - 85.000
Gender 0.0192
   Female 3371 (49.5%) 45188 (50.9%) 2864 (49.6%) 51423 (50.8%)
   Male 3436 (50.5%) 43552 (49.1%) 2905 (50.4%) 49893 (49.2%)
Race < 0.0012
   Black 1823 (26.8%) 20692 (23.3%) 1129 (19.6%) 23644 (23.3%)
   Mexican American 1373 (20.2%) 19426 (21.9%) 1650 (28.6%) 22449 (22.2%)
   Other 611 (9.0%) 8376 (9.4%) 510 (8.8%) 9497 (9.4%)
   Other Hispanic 592 (8.7%) 7201 (8.1%) 501 (8.7%) 8294 (8.2%)
   White 2408 (35.4%) 33045 (37.2%) 1979 (34.3%) 37432 (36.9%)
Marital_Status < 0.0012
   N-Miss 157 35025 4620 39802
   Divorced 838 (12.6%) 4599 (8.6%) 162 (14.1%) 5599 (9.1%)
   Living with partner 224 (3.4%) 3892 (7.2%) 70 (6.1%) 4186 (6.8%)
   Married 3634 (54.6%) 24349 (45.3%) 595 (51.8%) 28578 (46.5%)
   Never married 604 (9.1%) 15531 (28.9%) 137 (11.9%) 16272 (26.5%)
   Separated 253 (3.8%) 1541 (2.9%) 39 (3.4%) 1833 (3.0%)
   Widowed 1097 (16.5%) 3803 (7.1%) 146 (12.7%) 5046 (8.2%)
Grade_Level 0.0402
   N-Miss 6681 59497 5663 71841
   10th grade 11 (8.7%) 2177 (7.4%) 9 (8.5%) 2197 (7.5%)
   11th grade 12 (9.5%) 2146 (7.3%) 8 (7.5%) 2166 (7.3%)
   12th grade, no diploma 0 (0.0%) 438 (1.5%) 2 (1.9%) 440 (1.5%)
   1st grade 6 (4.8%) 2126 (7.3%) 2 (1.9%) 2134 (7.2%)
   2nd grade 4 (3.2%) 2102 (7.2%) 1 (0.9%) 2107 (7.1%)
   3rd grade 6 (4.8%) 2031 (6.9%) 6 (5.7%) 2043 (6.9%)
   4th grade 6 (4.8%) 2036 (7.0%) 12 (11.3%) 2054 (7.0%)
   5th grade 9 (7.1%) 2110 (7.2%) 10 (9.4%) 2129 (7.2%)
   6th grade 14 (11.1%) 2219 (7.6%) 5 (4.7%) 2238 (7.6%)
   7th grade 8 (6.3%) 2178 (7.4%) 11 (10.4%) 2197 (7.5%)
   8th grade 11 (8.7%) 2292 (7.8%) 12 (11.3%) 2315 (7.9%)
   9th grade 18 (14.3%) 2195 (7.5%) 15 (14.2%) 2228 (7.6%)
   Don’t Know 0 (0.0%) 9 (0.0%) 0 (0.0%) 9 (0.0%)
   GED or equivalent 0 (0.0%) 115 (0.4%) 0 (0.0%) 115 (0.4%)
   High school graduate 9 (7.1%) 1422 (4.9%) 7 (6.6%) 1438 (4.9%)
   Less than 5th grade 0 (0.0%) 26 (0.1%) 0 (0.0%) 26 (0.1%)
   Less than 9th grade 1 (0.8%) 277 (0.9%) 1 (0.9%) 279 (0.9%)
   More than high school 6 (4.8%) 980 (3.4%) 3 (2.8%) 989 (3.4%)
   Never attended / kindergarten only 5 (4.0%) 2362 (8.1%) 2 (1.9%) 2369 (8.0%)
   Refused 0 (0.0%) 2 (0.0%) 0 (0.0%) 2 (0.0%)
LBXGLU < 0.0011
   N-Miss 4455 69843 5326 79624
   Mean (SD) 160.710 (68.044) 100.018 (18.194) 118.363 (36.091) 106.974 (34.273)
   Range 21.000 - 584.000 38.000 - 422.000 77.000 - 451.000 21.000 - 584.000
  1. Linear Model ANOVA
  2. Pearson’s Chi-squared test

\(~\)


\(~\)

10.3 Assessing Cohort Balance

Let’s assume there was a cohort assigned to the patient, we can take our algorithm from Section 7.2

set.seed(85763099)

A_DATA_2$rand_class <- sample(c('Rand_A','Rand_B'), 
                            size = nrow(A_DATA_2),  
                            replace = TRUE)

A_DATA_2$rand_sort <- runif(nrow(A_DATA_2))

A_DATA_2 <- A_DATA_2 %>%
  arrange(rand_sort) %>%
  mutate(rn = row_number()) %>%
  mutate(rn_mod_5 = rn %% 5 ) %>% 
  mutate(rand_class = if_else( rn_mod_5 == 0, 
                              "Rand_C", 
                              rand_class)) %>%
  select(-rn, -rn_mod_5, -rand_sort) %>%
  mutate(rand_class = as.factor(rand_class))

We can check for balance in the cohorts among some of the features perhaps, Age, Race, and Gender with:

tableby(rand_class ~ Age + Gender + Race, 
        data = A_DATA_2) %>%
  summary(pfootnote=TRUE)
Rand_A (N=40552) Rand_B (N=40501) Rand_C (N=20263) Total (N=101316) p value
Age 0.0171
   Mean (SD) 31.059 (24.930) 30.977 (24.899) 31.570 (25.054) 31.128 (24.943)
   Range 0.000 - 85.000 0.000 - 85.000 0.000 - 85.000 0.000 - 85.000
Gender 0.2092
   Female 20557 (50.7%) 20472 (50.5%) 10394 (51.3%) 51423 (50.8%)
   Male 19995 (49.3%) 20029 (49.5%) 9869 (48.7%) 49893 (49.2%)
Race 0.1222
   Black 9357 (23.1%) 9654 (23.8%) 4633 (22.9%) 23644 (23.3%)
   Mexican American 9047 (22.3%) 8935 (22.1%) 4467 (22.0%) 22449 (22.2%)
   Other 3856 (9.5%) 3761 (9.3%) 1880 (9.3%) 9497 (9.4%)
   Other Hispanic 3333 (8.2%) 3292 (8.1%) 1669 (8.2%) 8294 (8.2%)
   White 14959 (36.9%) 14859 (36.7%) 7614 (37.6%) 37432 (36.9%)
  1. Linear Model ANOVA
  2. Pearson’s Chi-squared test

Above we see that both p-values of Race, and Gender are above .05 meaning the distributions of Race, and Gender appear to be random among the cohorts of rand_class; so here, the cohorts rand_class are well-balanced on Race, and Gender.

We see that the p-value of Age appears to be significant, however, the distributions appear to be similar:

A_DATA_2 %>%
  ggplot(aes(x=Age, color=rand_class)) +
  geom_density()

\(~\)


\(~\)

10.4 Missing Data

A_DATA_2.Num <- A_DATA_2 %>%
  select(SEQN, DIABETES, Gender, Race, Family_Income, all_of(FEATURE_TYPE$numeric_features))  

The first function is the Amelia::missmap function which can be used as follows.

tic <- Sys.time()

Amelia::missmap(as.data.frame(A_DATA_2.Num))

toc <- Sys.time()

time.Amelia <- difftime(toc , tic , units = "secs") 

Next we will review some of the functionality within the mice package:

library(mice)
#> 
#> Attaching package: 'mice'
#> The following object is masked from 'package:stats':
#> 
#>     filter
#> The following objects are masked from 'package:base':
#> 
#>     cbind, rbind
library(VIM)
#> Loading required package: colorspace
#> Loading required package: grid
#> VIM is ready to use.
#> Suggestions and bug-reports can be submitted at: https://github.com/statistikat/VIM/issues
#> 
#> Attaching package: 'VIM'
#> The following object is masked from 'package:datasets':
#> 
#>     sleep
library(lattice)
tic <- Sys.time()

#plot the missing values
plot.miss <- aggr(A_DATA_2.Num,  
     numbers=TRUE, 
     sortVars=TRUE, 
     labels=colnames(A_DATA_2.Num), 
     cex.axis=.7, 
     gap=3, 
     ylab=c("Proportion of missingness","Missingness Pattern"))
#> Warning in plot.aggr(res, ...): not enough vertical space to display frequencies
#> (too many combinations)
#> 
#>  Variables sorted by number of missings: 
#>              Variable      Count
#>               BMXSAD3 0.98905405
#>               BMXSAD4 0.98905405
#>               BMXHEAD 0.97536421
#>               LBDLDLM 0.97403174
#>              LBDLDMSI 0.97403174
#>               LBDLDLN 0.97384421
#>              LBDLDNSI 0.97384421
#>                LBXAPB 0.96934344
#>              LBDAPBSI 0.96934344
#>                BMXHIP 0.94039441
#>               URXUCR2 0.92734612
#>              URDUCR2S 0.92734612
#>               URXUMA2 0.92734612
#>              URDUMA2S 0.92734612
#>               URDACT2 0.92734612
#>                BPXDI4 0.91643965
#>                BPXSY4 0.91643965
#>              BMAEXLEN 0.90838564
#>              BMXRECUM 0.88619764
#>                BPXCHR 0.80783884
#>              PHAFSTHR 0.80652612
#>              PHAFSTMN 0.80652612
#>                LBDLDL 0.79523471
#>              LBDLDLSI 0.79523471
#>               BMXSAD1 0.79276718
#>               BMXSAD2 0.79276718
#>              BMDAVSAD 0.79276718
#>                 LBXTR 0.79212563
#>               LBDTRSI 0.79212563
#>                 LBXIN 0.79067472
#>               LBDINSI 0.79067472
#>                LBXGLU 0.78589759
#>              LBDGLUSI 0.78589759
#>                BPXDAR 0.78019266
#>                BPXSAR 0.78019266
#>              WTSAF2YR 0.77256307
#>              BMXTHICR 0.70892060
#>               BMXCALF 0.70493308
#>                URDACT 0.60521537
#>                BMXSUB 0.50978128
#>                 LBXTC 0.49466027
#>               LBDTCSI 0.49466027
#>                LBDHDD 0.49465040
#>              LBDHDDSI 0.49465040
#>                BMXTRI 0.46913617
#>                URXUMA 0.45004738
#>                URXUMS 0.45004738
#>                URXUCR 0.45003751
#>                URXCRS 0.45003751
#>         Family_Income 0.44252635
#>                BPXDI3 0.33547515
#>                BPXSY3 0.33546528
#>                BPXDI2 0.32948399
#>                BPXSY2 0.32948399
#>                BPXDI1 0.32314738
#>                BPXSY1 0.32314738
#>                BMXLEG 0.28113032
#>                BPXML1 0.27300722
#>                BPXPLS 0.27083580
#>              PEASCTM1 0.24495637
#>              BMXWAIST 0.16401161
#>                BMXBMI 0.13341427
#>                 BMXHT 0.12907142
#>               BMXARMC 0.09402266
#>               BMXARML 0.09381539
#>  Poverty_Income_Ratio 0.09076553
#>                 BMXWT 0.06054325
#>              DIABETES 0.05694066
#>                  SEQN 0.00000000
#>                Gender 0.00000000
#>                  Race 0.00000000
#>                   Age 0.00000000

toc <- Sys.time()

time.mice <- difftime(toc , tic , units = "secs") 
#Drawing margin plot
marginplot(A_DATA_2.Num[, c("Age", "BMXARML")], 
           cex.numbers = 1.2, 
           pch = 19)
#Drawing margin plot
marginplot(A_DATA_2.Num[, c("Age", "BMXSAD3")], 
           cex.numbers = 1.2, 
           pch = 19)

Here’s a function to give to return the a tibble of features with percentage of non-missing values:

Features_Percent_Complete <- function(data, Percent_Complete = 0){
  
  SumNa <- function(col){sum(is.na(col))}
  
  na_sums <- data %>% 
    summarise_all(SumNa) %>%
    tidyr::pivot_longer(everything() ,names_to = 'feature', values_to = 'SumNa') %>%
    arrange(-SumNa) %>%
    mutate(PctNa = SumNa/nrow(data)) %>%
    mutate(PctComp = (1 - PctNa)*100)
  
  data_out <- na_sums %>%
    filter(PctComp >= Percent_Complete)
  
return(data_out)
}

Let’s first define the features that have at least 70% data:

features_all_percent_compete <- Features_Percent_Complete(A_DATA_2.Num, 0)

features_all_percent_compete
#> # A tibble: 72 × 4
#>   feature   SumNa PctNa PctComp
#>   <chr>     <int> <dbl>   <dbl>
#> 1 BMXSAD3  100207 0.989    1.09
#> 2 BMXSAD4  100207 0.989    1.09
#> 3 BMXHEAD   98820 0.975    2.46
#> 4 LBDLDLM   98685 0.974    2.60
#> 5 LBDLDMSI  98685 0.974    2.60
#> 6 LBDLDLN   98666 0.974    2.62
#> # … with 66 more rows

Then we can graph this as:

features_all_percent_compete %>%
  ggplot(aes(x=reorder(feature, PctComp), y =PctComp, fill=feature)) +
  geom_bar(stat = "identity") +
  coord_flip() +
  theme(legend.position = "none") 

For the remainder of the majority of this discussion we’ll limit ourselves to features that have at least 65% of data:

features_65_num <- Features_Percent_Complete(A_DATA_2.Num, 65) %>%
  filter(feature %in% c(FEATURE_TYPE$numeric_features) )

features_65_num
#> # A tibble: 18 × 4
#>   feature SumNa PctNa PctComp
#>   <chr>   <int> <dbl>   <dbl>
#> 1 BPXDI3  33989 0.335    66.5
#> 2 BPXSY3  33988 0.335    66.5
#> 3 BPXDI2  33382 0.329    67.1
#> 4 BPXSY2  33382 0.329    67.1
#> 5 BPXDI1  32740 0.323    67.7
#> 6 BPXSY1  32740 0.323    67.7
#> # … with 12 more rows

Note again we can make a function for this graph above:

Feature_Percent_Complete_Graph <- function(data, Percent_Complete = 0 ){
  table <- Features_Percent_Complete(data, Percent_Complete)
  
  plot1 <- table %>%
    ggplot(aes(x=reorder(feature, PctComp), y =PctComp, fill=feature)) +
    geom_bar(stat = "identity") +
    coord_flip() +
    theme(legend.position = "none")
  return(plot1)
} 

Let’s time it:

tic <- Sys.time()

Feature_Percent_Complete_Graph(A_DATA_2.Num, 0)

toc <- Sys.time()

FPC.time <- difftime(toc , tic , units = 'secs')

10.4.0.1 Speed-Ups

Amelia is an older package, we can see that our function is

as.numeric(time.Amelia) / as.numeric(FPC.time)
#> [1] 187.8361

times faster than Amelia::missmap

It also outperforms the mice results by:

as.numeric(time.mice) / as.numeric(FPC.time)
#> [1] 167.5308

10.4.1 Missing Value Imputation

Note in the below summarise_at we are passing in a number of functions including a function to count the number of missing values n_miss, n, min, max, mean, median, and sd, these summary statistics are computed _at each of the vars we pass in:

summary_table <- A_DATA_2.Num %>%
  filter(!is.na(DIABETES)) %>%
  group_by(Gender, Race, Family_Income) %>%
  summarise_at(vars(all_of(features_65_num$feature)), 
               list( 
                 n = ~n(),
                 n_miss = ~sum(is.na(.x)),
                 min = ~min(.x , na.rm = TRUE),
                 max = ~max(.x , na.rm = TRUE),
                 mean = ~mean(.x , na.rm = TRUE),
                 median = ~median(.x , na.rm = TRUE),
                 sd = ~sd(.x , na.rm = TRUE)),
               .groups='keep'
               ) 
#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf

#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf

#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf

#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf

#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf

#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf

#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf

#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf

#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf

#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf

#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf

#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf

#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf

#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf

#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf

#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf

#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf

#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf

#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf

#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf
#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf

#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf

#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf

#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf

#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf

#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf

#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf

#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf

#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf

#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf

#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf

#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf

#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf

#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf

#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf

#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf

#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf

#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf

#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf

#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf

summary_table %>%
  glimpse()
#> Rows: 150
#> Columns: 129
#> Groups: Gender, Race [10]
#> $ Gender                      <chr> "Female", "Female", "Female", "Female", "F…
#> $ Race                        <chr> "Black", "Black", "Black", "Black", "Black…
#> $ Family_Income               <chr> "$ 0 to $ 4,999", "$ 5,000 to $ 9,999", "$…
#> $ BPXDI3_n                    <int> 364, 459, 522, 541, 456, 171, 544, 827, 57…
#> $ BPXSY3_n                    <int> 364, 459, 522, 541, 456, 171, 544, 827, 57…
#> $ BPXDI2_n                    <int> 364, 459, 522, 541, 456, 171, 544, 827, 57…
#> $ BPXSY2_n                    <int> 364, 459, 522, 541, 456, 171, 544, 827, 57…
#> $ BPXDI1_n                    <int> 364, 459, 522, 541, 456, 171, 544, 827, 57…
#> $ BPXSY1_n                    <int> 364, 459, 522, 541, 456, 171, 544, 827, 57…
#> $ BMXLEG_n                    <int> 364, 459, 522, 541, 456, 171, 544, 827, 57…
#> $ BPXML1_n                    <int> 364, 459, 522, 541, 456, 171, 544, 827, 57…
#> $ BPXPLS_n                    <int> 364, 459, 522, 541, 456, 171, 544, 827, 57…
#> $ PEASCTM1_n                  <int> 364, 459, 522, 541, 456, 171, 544, 827, 57…
#> $ BMXWAIST_n                  <int> 364, 459, 522, 541, 456, 171, 544, 827, 57…
#> $ BMXBMI_n                    <int> 364, 459, 522, 541, 456, 171, 544, 827, 57…
#> $ BMXHT_n                     <int> 364, 459, 522, 541, 456, 171, 544, 827, 57…
#> $ BMXARMC_n                   <int> 364, 459, 522, 541, 456, 171, 544, 827, 57…
#> $ BMXARML_n                   <int> 364, 459, 522, 541, 456, 171, 544, 827, 57…
#> $ Poverty_Income_Ratio_n      <int> 364, 459, 522, 541, 456, 171, 544, 827, 57…
#> $ BMXWT_n                     <int> 364, 459, 522, 541, 456, 171, 544, 827, 57…
#> $ Age_n                       <int> 364, 459, 522, 541, 456, 171, 544, 827, 57…
#> $ BPXDI3_n_miss               <int> 110, 142, 155, 117, 136, 36, 134, 206, 138…
#> $ BPXSY3_n_miss               <int> 110, 142, 155, 117, 136, 36, 134, 206, 138…
#> $ BPXDI2_n_miss               <int> 114, 145, 160, 112, 129, 34, 126, 208, 138…
#> $ BPXSY2_n_miss               <int> 114, 145, 160, 112, 129, 34, 126, 208, 138…
#> $ BPXDI1_n_miss               <int> 113, 148, 163, 129, 139, 38, 138, 219, 145…
#> $ BPXSY1_n_miss               <int> 113, 148, 163, 129, 139, 38, 138, 219, 145…
#> $ BMXLEG_n_miss               <int> 116, 139, 165, 111, 134, 35, 126, 199, 129…
#> $ BPXML1_n_miss               <int> 101, 130, 143, 104, 119, 31, 113, 184, 126…
#> $ BPXPLS_n_miss               <int> 101, 131, 142, 104, 119, 31, 113, 183, 126…
#> $ PEASCTM1_n_miss             <int> 131, 145, 170, 229, 155, 48, 187, 294, 229…
#> $ BMXWAIST_n_miss             <int> 59, 66, 79, 66, 55, 25, 73, 91, 55, 57, 26…
#> $ BMXBMI_n_miss               <int> 37, 36, 45, 42, 32, 15, 39, 59, 36, 32, 11…
#> $ BMXHT_n_miss                <int> 36, 36, 44, 42, 32, 14, 39, 59, 34, 32, 11…
#> $ BMXARMC_n_miss              <int> 41, 40, 58, 44, 41, 20, 50, 65, 39, 42, 20…
#> $ BMXARML_n_miss              <int> 43, 42, 57, 45, 40, 22, 52, 66, 39, 42, 21…
#> $ Poverty_Income_Ratio_n_miss <int> 0, 0, 0, 0, 0, 171, 0, 0, 0, 0, 0, 0, 0, 1…
#> $ BMXWT_n_miss                <int> 24, 17, 30, 27, 22, 9, 23, 36, 21, 19, 6, …
#> $ Age_n_miss                  <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
#> $ BPXDI3_min                  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26,…
#> $ BPXSY3_min                  <dbl> 84, 82, 74, 82, 86, 80, 82, 80, 78, 82, 86…
#> $ BPXDI2_min                  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36,…
#> $ BPXSY2_min                  <dbl> 86, 86, 72, 80, 86, 84, 84, 84, 76, 82, 86…
#> $ BPXDI1_min                  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42,…
#> $ BPXSY1_min                  <dbl> 88, 80, 74, 82, 84, 84, 86, 84, 78, 84, 86…
#> $ BMXLEG_min                  <dbl> 27.6, 27.7, 24.9, 27.1, 27.2, 29.8, 28.0, …
#> $ BPXML1_min                  <dbl> 110, 0, 110, 100, 110, 120, 110, 110, 110,…
#> $ BPXPLS_min                  <dbl> 50, 46, 46, 44, 46, 50, 46, 46, 50, 48, 36…
#> $ PEASCTM1_min                <dbl> 6, 9, 6, 37, 7, 46, 8, 3, 7, 6, 5, 7, 6, 1…
#> $ BMXWAIST_min                <dbl> 38.7, 43.3, 40.5, 46.2, 42.7, 43.9, 44.2, …
#> $ BMXBMI_min                  <dbl> 13.40, 12.50, 13.41, 13.40, 12.70, 13.30, …
#> $ BMXHT_min                   <dbl> 78.5, 81.6, 82.8, 86.0, 82.5, 92.3, 86.9, …
#> $ BMXARMC_min                 <dbl> 13.8, 13.8, 13.9, 14.6, 13.7, 14.0, 13.1, …
#> $ BMXARML_min                 <dbl> 13.9, 15.0, 14.4, 16.0, 14.0, 15.6, 16.0, …
#> $ Poverty_Income_Ratio_min    <dbl> 0.00, 0.12, 0.27, 2.25, 0.30, Inf, 0.48, 0…
#> $ BMXWT_min                   <dbl> 7.7, 8.9, 8.5, 10.0, 8.9, 10.0, 8.9, 8.2, …
#> $ Age_min                     <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
#> $ BPXDI3_max                  <dbl> 116, 126, 112, 110, 108, 102, 112, 118, 11…
#> $ BPXSY3_max                  <dbl> 224, 212, 218, 210, 196, 222, 212, 232, 20…
#> $ BPXDI2_max                  <dbl> 126, 124, 110, 114, 110, 104, 108, 122, 11…
#> $ BPXSY2_max                  <dbl> 190, 228, 212, 208, 194, 216, 210, 234, 20…
#> $ BPXDI1_max                  <dbl> 124, 124, 106, 114, 104, 112, 116, 116, 11…
#> $ BPXSY1_max                  <dbl> 208, 230, 220, 208, 198, 216, 222, 238, 20…
#> $ BMXLEG_max                  <dbl> 47.2, 46.8, 48.2, 48.5, 50.0, 45.0, 46.7, …
#> $ BPXML1_max                  <dbl> 240, 250, 888, 220, 220, 250, 888, 888, 24…
#> $ BPXPLS_max                  <dbl> 120, 116, 130, 120, 112, 110, 140, 118, 12…
#> $ PEASCTM1_max                <dbl> 1131, 1536, 1243, 1439, 1274, 1086, 1142, …
#> $ BMXWAIST_max                <dbl> 165.5, 171.6, 156.8, 163.5, 158.8, 151.7, …
#> $ BMXBMI_max                  <dbl> 57.80, 82.10, 77.50, 68.70, 84.40, 64.70, …
#> $ BMXHT_max                   <dbl> 184.8, 186.4, 180.9, 187.8, 184.1, 177.4, …
#> $ BMXARMC_max                 <dbl> 54.0, 57.3, 51.7, 58.1, 48.5, 51.5, 58.3, …
#> $ BMXARML_max                 <dbl> 42.0, 43.9, 43.2, 43.0, 43.9, 41.9, 43.0, …
#> $ Poverty_Income_Ratio_max    <dbl> 0.43, 0.95, 1.35, 5.00, 1.85, -Inf, 2.31, …
#> $ BMXWT_max                   <dbl> 157.5, 187.7, 191.6, 193.7, 219.6, 173.4, …
#> $ Age_max                     <dbl> 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80…
#> $ BPXDI3_mean                 <dbl> 65.09449, 67.35016, 64.74659, 65.93396, 66…
#> $ BPXSY3_mean                 <dbl> 117.7087, 123.9558, 122.2616, 116.7594, 12…
#> $ BPXDI2_mean                 <dbl> 65.25600, 67.51592, 65.16575, 66.54079, 66…
#> $ BPXSY2_mean                 <dbl> 117.6400, 125.1401, 123.3702, 117.6364, 12…
#> $ BPXDI1_mean                 <dbl> 66.28685, 68.47588, 65.14206, 66.51942, 66…
#> $ BPXSY1_mean                 <dbl> 117.8725, 125.1447, 122.8969, 117.5485, 12…
#> $ BMXLEG_mean                 <dbl> 38.63629, 38.14375, 37.86022, 38.96349, 37…
#> $ BPXML1_mean                 <dbl> 143.3840, 149.3617, 155.3879, 143.5515, 14…
#> $ BPXPLS_mean                 <dbl> 77.87072, 76.92073, 75.43684, 74.52174, 75…
#> $ PEASCTM1_mean               <dbl> 543.7597, 563.0000, 554.6705, 637.6538, 55…
#> $ BMXWAIST_mean               <dbl> 83.58656, 89.62290, 88.33115, 89.26379, 84…
#> $ BMXBMI_mean                 <dbl> 26.12003, 27.81638, 27.77199, 27.98603, 26…
#> $ BMXHT_mean                  <dbl> 148.9064, 150.9000, 150.5358, 156.7822, 15…
#> $ BMXARMC_mean                <dbl> 28.14458, 29.31217, 29.28405, 30.31288, 28…
#> $ BMXARML_mean                <dbl> 32.38505, 32.86547, 33.19505, 34.53145, 32…
#> $ Poverty_Income_Ratio_mean   <dbl> 0.10730769, 0.46331155, 0.70402299, 4.6876…
#> $ BMXWT_mean                  <dbl> 60.84735, 65.91312, 66.12337, 70.02490, 63…
#> $ Age_mean                    <dbl> 24.66484, 33.91285, 35.53831, 33.82994, 31…
#> $ BPXDI3_median               <dbl> 66, 68, 66, 68, 68, 70, 66, 68, 66, 68, 68…
#> $ BPXSY3_median               <dbl> 114, 118, 116, 112, 116, 122, 114, 116, 11…
#> $ BPXDI2_median               <dbl> 66, 66, 66, 68, 68, 68, 66, 66, 66, 66, 66…
#> $ BPXSY2_median               <dbl> 114, 120, 116, 114, 116, 122, 114, 116, 11…
#> $ BPXDI1_median               <dbl> 66, 68, 66, 68, 68, 68, 66, 66, 66, 68, 68…
#> $ BPXSY1_median               <dbl> 114, 120, 118, 114, 116, 122, 114, 116, 11…
#> $ BMXLEG_median               <dbl> 38.95, 38.20, 38.00, 39.05, 38.00, 38.30, …
#> $ BPXML1_median               <dbl> 140, 140, 140, 140, 140, 140, 140, 140, 14…
#> $ BPXPLS_median               <dbl> 78, 76, 74, 74, 74, 74, 76, 76, 74, 74, 74…
#> $ PEASCTM1_median             <dbl> 567.0, 576.5, 603.5, 657.5, 590.0, 667.0, …
#> $ BMXWAIST_median             <dbl> 80.80, 90.20, 91.60, 89.40, 86.70, 99.60, …
#> $ BMXBMI_median               <dbl> 23.700, 26.660, 27.230, 26.900, 25.500, 30…
#> $ BMXHT_median                <dbl> 158.45, 159.00, 158.35, 161.40, 158.50, 16…
#> $ BMXARMC_median              <dbl> 28.00, 29.80, 30.10, 30.70, 29.30, 32.50, …
#> $ BMXARML_median              <dbl> 34.60, 35.40, 35.70, 36.00, 35.15, 36.00, …
#> $ Poverty_Income_Ratio_median <dbl> 0.085, 0.410, 0.680, 5.000, 0.860, NA, 1.0…
#> $ BMXWT_median                <dbl> 59.65, 67.10, 70.05, 70.55, 64.95, 76.75, …
#> $ Age_median                  <dbl> 19.0, 28.0, 31.0, 35.0, 24.0, 42.0, 26.0, …
#> $ BPXDI3_sd                   <dbl> 16.55506, 17.14552, 16.63621, 15.14111, 16…
#> $ BPXSY3_sd                   <dbl> 19.76127, 23.39178, 23.76564, 18.70560, 20…
#> $ BPXDI2_sd                   <dbl> 15.90050, 16.45426, 16.46419, 14.67869, 16…
#> $ BPXSY2_sd                   <dbl> 19.00957, 23.64783, 23.73587, 18.99184, 21…
#> $ BPXDI1_sd                   <dbl> 14.07457, 15.88685, 15.49407, 13.23757, 15…
#> $ BPXSY1_sd                   <dbl> 19.40844, 24.38247, 23.34555, 18.58550, 21…
#> $ BMXLEG_sd                   <dbl> 3.544325, 3.598819, 3.773591, 3.155392, 3.…
#> $ BPXML1_sd                   <dbl> 20.31134, 24.59216, 69.76214, 18.14822, 21…
#> $ BPXPLS_sd                   <dbl> 12.51924, 12.55665, 12.28718, 11.47804, 12…
#> $ PEASCTM1_sd                 <dbl> 248.5154, 272.9288, 271.9278, 245.9812, 25…
#> $ BMXWAIST_sd                 <dbl> 25.32800, 26.69575, 25.81373, 21.50595, 24…
#> $ BMXBMI_sd                   <dbl> 9.509575, 10.418529, 9.889805, 8.842373, 9…
#> $ BMXHT_sd                    <dbl> 23.88131, 22.45114, 21.96616, 16.70671, 22…
#> $ BMXARMC_sd                  <dbl> 8.507530, 9.030110, 8.539857, 7.509531, 8.…
#> $ BMXARML_sd                  <dbl> 6.895394, 6.810559, 6.819470, 5.132052, 6.…
#> $ Poverty_Income_Ratio_sd     <dbl> 0.09773131, 0.20340318, 0.26553590, 0.5764…
#> $ BMXWT_sd                    <dbl> 33.33993, 35.45615, 33.77805, 29.73478, 33…
#> $ Age_sd                      <dbl> 20.24840, 25.68241, 26.35764, 22.24478, 25…

We can actually restructure this table if we use some dplyr:

summary_table %>%
  pivot_longer(cols = contains(features_65_num$feature))
#> # A tibble: 18,900 × 5
#> # Groups:   Gender, Race [10]
#>   Gender Race  Family_Income  name          value
#>   <chr>  <chr> <chr>          <chr>         <dbl>
#> 1 Female Black $ 0 to $ 4,999 BPXDI3_n      364  
#> 2 Female Black $ 0 to $ 4,999 BPXDI3_n_miss 110  
#> 3 Female Black $ 0 to $ 4,999 BPXDI3_min      0  
#> 4 Female Black $ 0 to $ 4,999 BPXDI3_max    116  
#> 5 Female Black $ 0 to $ 4,999 BPXDI3_mean    65.1
#> 6 Female Black $ 0 to $ 4,999 BPXDI3_median  66  
#> # … with 18,894 more rows

We can also just focus on the counts of missing values:

summary_table %>%
  pivot_longer(cols = contains(features_65_num$feature)) %>%
  filter(str_detect(name, "n_miss")) %>%
  arrange(-value)
#> # A tibble: 2,700 × 5
#> # Groups:   Gender, Race [10]
#>   Gender Race  Family_Income name          value
#>   <chr>  <chr> <chr>         <chr>         <dbl>
#> 1 Female White <NA>          BPXDI3_n_miss  2701
#> 2 Female White <NA>          BPXSY3_n_miss  2700
#> 3 Female White <NA>          BPXDI2_n_miss  2619
#> 4 Female White <NA>          BPXSY2_n_miss  2619
#> 5 Male   White <NA>          BPXDI3_n_miss  2516
#> 6 Male   White <NA>          BPXSY3_n_miss  2516
#> # … with 2,694 more rows

We can impute missing values with the mean for the column, perhaps by Gender, Race, Family_Income

A_DATA_2.Num.impute <- A_DATA_2.Num %>%
  filter(!is.na(DIABETES)) %>%
  mutate_at(vars(Gender, Race), ~if_else(is.na(.x), "Missing", .x)) %>%
  group_by(Gender, Race) %>%
  mutate_at(vars(features_65_num$feature),  ~if_else(is.na(.x), mean(.x, na.rm = TRUE), .x)) %>%
  ungroup() %>%
  select(SEQN, DIABETES, Gender, Race, Family_Income, all_of(features_65_num$feature))

We can recompute our summary table - and if we were so inclined see if any of these values changed significantly:

A_DATA_2.Num.impute %>%
  group_by(Gender, Race, Family_Income) %>%
  summarise_at(vars(all_of(features_65_num$feature)), 
               list( 
                 n = ~n(),
                 n_miss = ~sum(is.na(.x)),
                 min = ~min(.x , na.rm = TRUE),
                 max = ~max(.x , na.rm = TRUE),
                 mean = ~mean(.x , na.rm = TRUE),
                 median = ~median(.x , na.rm = TRUE),
                 sd = ~sd(.x , na.rm = TRUE)),
               .groups='keep'
               ) %>%
  ungroup() %>%
  pivot_longer(contains(features_65_num$feature)) %>%
  filter(str_detect(name,"n_miss")) %>%
  arrange(-value)
#> # A tibble: 2,700 × 5
#>   Gender Race  Family_Income  name          value
#>   <chr>  <chr> <chr>          <chr>         <dbl>
#> 1 Female Black $ 0 to $ 4,999 BPXDI3_n_miss     0
#> 2 Female Black $ 0 to $ 4,999 BPXSY3_n_miss     0
#> 3 Female Black $ 0 to $ 4,999 BPXDI2_n_miss     0
#> 4 Female Black $ 0 to $ 4,999 BPXSY2_n_miss     0
#> 5 Female Black $ 0 to $ 4,999 BPXDI1_n_miss     0
#> 6 Female Black $ 0 to $ 4,999 BPXSY1_n_miss     0
#> # … with 2,694 more rows

But for now let’s just look at the number of missing values:

Feature_Percent_Complete_Graph(A_DATA_2.Num.impute,0)

\(~\)


\(~\)

10.5 Correlated Features

Often we will want to search for highly correlated features in order to reduce the number of them in a model.

In the extreme case, consider some variables that are perfectly correlated, i.e. linearly dependent.

Let’s say you’re using logistic regression to predict the probability of having Diabetes, where one of the predictor variables will be Age, but for some reason you read in two input variables \(x_1\) = Age in months and \(x_2\) = Age in years. Clearly, \(x_1\) and \(x_2\) are linearly dependent as \[x_1 \cdot 12 = x_2 \].

In your model, you will estimate coefficients \(\beta_i\) such that

\[\log \left( \frac{P(DIABETES == 1)}{P(DIABETES == 0)} \right)=\beta_0+\beta_1x_1+\beta_2x_2+(\cdots)\]

Due to the linear dependence, we can rewrite this:

\[\log \left( \frac{P(DIABETES == 1)}{P(DIABETES == 0)} \right)=\beta_0 + \beta_1x_1 + \beta_2\cdot ( x_1 \cdot 12) + (\cdots)\]

\[\log \left( \frac{P(DIABETES == 1)}{P(DIABETES == 0)} \right)=\beta_0 + x_1 ( \beta_1 + 12 \cdot \beta_2 ) + (\cdots)\]

SUPPOSE (for some reason) that the Age in years has no influence on Diabetic status.

Then you would expect your model to find \[\beta_1 = \beta_2=0\].

However, due to linear dependence, the model cannot distinguish between \(\beta_1=12\), \(\beta_2 = -1\) or any other combination where \(\beta_1 + 12 \cdot \beta_2 = 0\)

Thus on the one hand, your model itself might become numerically unstable. On the other hand, you can no longer interpret the results correctly.

The same is true when variables are no longer linearly dependent but highly correlated.

GGally::ggcorr(A_DATA_2.Num.impute %>% select(all_of(features_65_num$feature)),
               method = c("pairwise", "pearson"),
               nbreaks = 10,
               label = TRUE)
#> Registered S3 method overwritten by 'GGally':
#>   method from   
#>   +.gg   ggplot2

In the graph below we highlighted all the correlations with absolute value greater than \(.6\):

library('GGally')

ggcorr(A_DATA_2.Num.impute %>% select(all_of(features_65_num$feature)),
       geom = "blank", label = TRUE, hjust = 0.75) +
  geom_point(size = 10, aes(color = coefficient > 0, alpha = abs(coefficient) > 0.6)) +
  scale_alpha_manual(values = c("TRUE" = 0.25, "FALSE" = 0)) +
  guides(color = FALSE, alpha = FALSE)
#> Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none" instead as
#> of ggplot2 3.3.4.
library('corrr')
cor.corr_data <- correlate(A_DATA_2.Num.impute %>% select(all_of(features_65_num$feature)))
#> Correlation computed with
#> • Method: 'pearson'
#> • Missing treated using: 'pairwise.complete.obs'

cor.corr_data %>%
  glimpse()
#> Rows: 18
#> Columns: 19
#> $ term                 <chr> "BPXDI3", "BPXSY3", "BPXDI2", "BPXSY2", "BPXDI1",…
#> $ BPXDI3               <dbl> NA, 0.38920867, 0.83967525, 0.36443328, 0.7753937…
#> $ BPXSY3               <dbl> 0.38920867, NA, 0.38726807, 0.90335402, 0.3855849…
#> $ BPXDI2               <dbl> 0.83967525, 0.38726807, NA, 0.40498199, 0.7965398…
#> $ BPXSY2               <dbl> 0.36443328, 0.90335402, 0.40498199, NA, 0.3885915…
#> $ BPXDI1               <dbl> 0.77539372, 0.38558496, 0.79653986, 0.38859151, N…
#> $ BPXSY1               <dbl> 0.33796063, 0.85488694, 0.36272962, 0.87340339, 0…
#> $ BMXLEG               <dbl> 0.17755182, 0.08128816, 0.17371484, 0.07458496, 0…
#> $ BPXML1               <dbl> 0.29189725, 0.71441600, 0.31253493, 0.72838772, 0…
#> $ BPXPLS               <dbl> -0.04218378, -0.13904054, -0.04813751, -0.1459656…
#> $ PEASCTM1             <dbl> 0.04786246, 0.09740853, 0.05094561, 0.09772117, 0…
#> $ BMXWAIST             <dbl> 0.21484511, 0.28490823, 0.22377722, 0.28689614, 0…
#> $ BMXBMI               <dbl> 0.19847274, 0.25144750, 0.20672813, 0.25229207, 0…
#> $ BMXHT                <dbl> 0.1497063, 0.1099074, 0.1519246, 0.1080122, 0.157…
#> $ BMXARMC              <dbl> 0.20485012, 0.21875540, 0.21110377, 0.21854444, 0…
#> $ BMXARML              <dbl> 0.1432836, 0.1448157, 0.1464210, 0.1440410, 0.152…
#> $ Poverty_Income_Ratio <dbl> 0.08229314, 0.02244386, 0.08448418, 0.02402425, 0…
#> $ BMXWT                <dbl> 0.21497276, 0.22357424, 0.22145776, 0.22239343, 0…
#> $ Age                  <dbl> 0.20551574, 0.43888769, 0.22400775, 0.45189382, 0…

Let’s find all the rows where Age has a correlation of .5 or more with another variable.

cor.corr_data %>%
   filter(Age > .5)
#> # A tibble: 4 × 19
#>   term   BPXDI3 BPXSY3 BPXDI2 BPXSY2 BPXDI1 BPXSY1 BMXLEG BPXML1  BPXPLS PEASC…¹
#>   <chr>   <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>   <dbl>   <dbl>
#> 1 BMXWA…  0.215  0.285  0.224  0.287  0.233  0.287  0.157  0.238 -0.0462   0.432
#> 2 BMXAR…  0.205  0.219  0.211  0.219  0.219  0.217  0.231  0.173 -0.0769   0.510
#> 3 BMXAR…  0.143  0.145  0.146  0.144  0.153  0.148  0.339  0.131 -0.104    0.599
#> 4 BMXWT   0.215  0.224  0.221  0.222  0.229  0.220  0.301  0.187 -0.0701   0.521
#> # … with 8 more variables: BMXWAIST <dbl>, BMXBMI <dbl>, BMXHT <dbl>,
#> #   BMXARMC <dbl>, BMXARML <dbl>, Poverty_Income_Ratio <dbl>, BMXWT <dbl>,
#> #   Age <dbl>, and abbreviated variable name ¹​PEASCTM1

Let’s find all the rows where any feature has a correlation of .7 or more with another variable:

cor.corr_data %>%
   filter_at(vars(all_of(features_65_num$feature)), any_vars( . > .7 ))
#> # A tibble: 13 × 19
#>   term   BPXDI3 BPXSY3 BPXDI2 BPXSY2 BPXDI1 BPXSY1 BMXLEG BPXML1  BPXPLS PEASC…¹
#>   <chr>   <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>   <dbl>   <dbl>
#> 1 BPXDI3 NA      0.389  0.840  0.364  0.775  0.338 0.178   0.292 -0.0422  0.0479
#> 2 BPXSY3  0.389 NA      0.387  0.903  0.386  0.855 0.0813  0.714 -0.139   0.0974
#> 3 BPXDI2  0.840  0.387 NA      0.405  0.797  0.363 0.174   0.313 -0.0481  0.0509
#> 4 BPXSY2  0.364  0.903  0.405 NA      0.389  0.873 0.0746  0.728 -0.146   0.0977
#> 5 BPXDI1  0.775  0.386  0.797  0.389 NA      0.404 0.178   0.320 -0.0498  0.0569
#> 6 BPXSY1  0.338  0.855  0.363  0.873  0.404 NA     0.0773  0.739 -0.156   0.103 
#> # … with 7 more rows, 8 more variables: BMXWAIST <dbl>, BMXBMI <dbl>,
#> #   BMXHT <dbl>, BMXARMC <dbl>, BMXARML <dbl>, Poverty_Income_Ratio <dbl>,
#> #   BMXWT <dbl>, Age <dbl>, and abbreviated variable name ¹​PEASCTM1

Above we used an _at version of a dplyr function, in this case it will apply the function any_vars( . > .7 ) to the columns corr_features.

cor.corr_data %>% 
  focus(BMXWT, BMXARMC, BMXARML, BMXWAIST)
#> # A tibble: 14 × 5
#>   term   BMXWT BMXARMC BMXARML BMXWAIST
#>   <chr>  <dbl>   <dbl>   <dbl>    <dbl>
#> 1 BPXDI3 0.215   0.205   0.143    0.215
#> 2 BPXSY3 0.224   0.219   0.145    0.285
#> 3 BPXDI2 0.221   0.211   0.146    0.224
#> 4 BPXSY2 0.222   0.219   0.144    0.287
#> 5 BPXDI1 0.229   0.219   0.153    0.233
#> 6 BPXSY1 0.220   0.217   0.148    0.287
#> # … with 8 more rows
cor.corr_data %>%
  focus(BMXWT, BMXARMC, BMXARML, BMXWAIST, mirror = TRUE) %>%  # Focus only on these
  shave() %>% # Remove the upper triangle
  fashion()   # Print in nice format
#>       term BMXWT BMXARMC BMXARML BMXWAIST
#> 1 BMXWAIST   .87                         
#> 2  BMXARMC   .94                         
#> 3  BMXARML   .83     .81                 
#> 4    BMXWT           .94     .83      .87
cor.corr_data %>%
  focus(BMXWT, BMXARMC, BMXARML, BMXWAIST, mirror = TRUE) %>%
  shave(upper = FALSE) %>% 
  rplot()     

The findCorrelation function in the caret library is useful to find correlated features as well:

correlated_features <- caret::findCorrelation( cor(A_DATA_2.Num.impute %>% select(all_of(features_65_num$feature)) ),
                        cutoff = .8,
                        names = TRUE )

correlated_features
#> [1] "BMXWT"    "BMXARMC"  "BMXWAIST" "BMXARML"  "BPXSY2"   "BPXSY3"   "BPXDI2"

The DataExplorer package also has a nice plot_correlate function:


DataExplorer::plot_correlation(A_DATA_2.Num.impute %>% select(all_of(features_65_num$feature)), maxcat = 5L)

\(~\)


\(~\)

10.6 Principal Component Analysis

Principal Component Analysis describes an orthogonal (preserves inner product) linear transformation of the data; where the data are mapped into a new coordinate system for which the first dimension (the first principal component) contains the greatest variance of the data; the second dimension contains the second greatest variance; and so on.

We will showcase how Principal Component Analysis (PCA) can yield the Principal Components (PCs) can be utilized as effectively as features in a predictive model.

First will split the data:

set.seed(4321)

A_DATA_2.Num.impute <- A_DATA_2.Num.impute %>%
  mutate(DIABETES_factor = as.factor(DIABETES))


PCA_train.sample <- sample(A_DATA_2.Num.impute$SEQN,
                    nrow(A_DATA_2.Num.impute)*.65,
                    replace = FALSE)

PCA.train <- A_DATA_2.Num.impute %>%
  filter(SEQN %in% PCA_train.sample) 

PCA.test <- A_DATA_2.Num.impute %>%
  filter(!(SEQN %in% PCA_train.sample)) 

10.6.1 Fit PCA Model

Below, we set center and scale to TRUE so R will center (subtract the mean) and scale (divide by the standard deviation) by each numeric column (i.e., z-score, normalize. or standardize the data). Now we can fit a PCA model on the training data:

A_DATA_2.pca.model <- prcomp(PCA.train %>% select(all_of(features_65_num$feature)), 
                              center=TRUE,
                              scale=TRUE)

A_DATA_2.pca.sum <- summary(A_DATA_2.pca.model)
A_DATA_2.pca.sum
#> Importance of components:
#>                           PC1    PC2    PC3     PC4     PC5     PC6     PC7
#> Standard deviation     2.5932 1.8469 1.3480 1.11308 0.99830 0.92194 0.90134
#> Proportion of Variance 0.3736 0.1895 0.1010 0.06883 0.05537 0.04722 0.04513
#> Cumulative Proportion  0.3736 0.5631 0.6641 0.73290 0.78826 0.83548 0.88062
#>                            PC8     PC9    PC10    PC11   PC12    PC13    PC14
#> Standard deviation     0.67495 0.62261 0.51934 0.49271 0.4799 0.40570 0.37000
#> Proportion of Variance 0.02531 0.02154 0.01498 0.01349 0.0128 0.00914 0.00761
#> Cumulative Proportion  0.90593 0.92746 0.94245 0.95593 0.9687 0.97787 0.98548
#>                           PC15    PC16    PC17    PC18
#> Standard deviation     0.30437 0.29754 0.22877 0.16703
#> Proportion of Variance 0.00515 0.00492 0.00291 0.00155
#> Cumulative Proportion  0.99062 0.99554 0.99845 1.00000

You can see there are 18 principal components, with each explaining a proportion of the variability in the data. For example, PC1 explains 37.36% of the total variance; the first 5 principal components account for over 78.826% of the variance; the first 10 principal components account for over 94.245% of the variance.

10.6.2 Plot Principal Components

The biplot is used to visualize principal components. This plots the first and second principal components. The closer the variable is the the center, the less contribution that variable has to either principal component. The configuration of arrows reflects the relations of the variables. The cosine of the angle (the dot product) between the arrows reflects the correlation between the variables they represent, and the principal component.

AMR::ggplot_pca(A_DATA_2.pca.model, arrows_colour = 'red') # note here that the assumption is to plot PC1 V PC2
biplot PC1 Vs PC2

(#fig:PCA-plot-1-2 )biplot PC1 Vs PC2

This is the first versus the third principal component, again notice the magnitude and direction of the vector with relation to the first principal component:

AMR::ggplot_pca(A_DATA_2.pca.model,
                choices = c(1,3), # here we specify PC1 V PC3 
                arrows_colour = 'red')
biplot PC1 Vs PC3

(#fig:PCA-plot-1-3 )biplot PC1 Vs PC3

And now here’s a look at the second versus the third, we see everything is concentrated near the origin (Remark when we zoomed in with coord_cartesian some points were excluded from the Figure below)

AMR::ggplot_pca(A_DATA_2.pca.model,
                choices = c(2,3),
                arrows_colour = 'red',
                arrows_size = 1,
                arrows_textsize = 4) +
  coord_cartesian(xlim = c(-5,5), ylim=c(-5,5))
biplot PC2 Vs PC3

(#fig:PCA-plot-2-3 )biplot PC2 Vs PC3

10.6.3 Scree Plot

We aim to find the components with the maximum variance so we can retain as much information about the original dataset as possible.

To determine the number of principal components to retain in our analysis we need to compute the proportion of variance explained.

We can plot the cumulative proportion of variance explained in a scree plot to determine the number of principal components to retain:

var_exp <- A_DATA_2.pca.model$sdev^2

# Proportion of variance explained
pct_var_exp <- var_exp/sum(var_exp)

Prop_Var_Explained_df <- as_tibble(cbind(var_exp, pct_var_exp))

Prop_Var_Explained_df$PC <- 1:nrow(Prop_Var_Explained_df)


Prop_Var_Explained_df <- Prop_Var_Explained_df %>%
  mutate(cum_pct = cumsum(pct_var_exp)) 

Prop_Var_Explained_df %>%
  ggplot(aes(x=PC, y=cum_pct)) +
  geom_point() +
  geom_smooth()
#> `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
min_cum_pct <- min(Prop_Var_Explained_df$cum_pct)

min_cum_pct
#> [1] 0.3735985

pc_var2 <- Prop_Var_Explained_df %>%
  filter(cum_pct <= max(0.8, min_cum_pct))

pc_var2 %>%
  head()
#> # A tibble: 5 × 4
#>   var_exp pct_var_exp    PC cum_pct
#>     <dbl>       <dbl> <int>   <dbl>
#> 1   6.72       0.374      1   0.374
#> 2   3.41       0.190      2   0.563
#> 3   1.82       0.101      3   0.664
#> 4   1.24       0.0688     4   0.733
#> 5   0.997      0.0554     5   0.788
ggplot(pc_var2, aes(x = reorder(PC, pct_var_exp), y = pct_var_exp)) +
    geom_bar(stat = "identity") +
    scale_y_continuous(labels = scales::percent) +
    coord_flip() +
    labs(x = "Principal Components", y = "% Variance Explained")

Next let’s get the eigenvectors

rotation_tibble <- as_tibble(A_DATA_2.pca.model$rotation , rownames='Feature')

rotation_tibble %>%
  head()
#> # A tibble: 6 × 19
#>   Feature   PC1   PC2    PC3      PC4     PC5    PC6     PC7      PC8      PC9
#>   <chr>   <dbl> <dbl>  <dbl>    <dbl>   <dbl>  <dbl>   <dbl>    <dbl>    <dbl>
#> 1 BPXDI3  0.183 0.259 -0.469 -0.0709  -0.0571  0.119 -0.0323  0.0113   0.00534
#> 2 BPXSY3  0.226 0.348  0.240  0.00761  0.0530 -0.125 -0.0362  0.148   -0.300  
#> 3 BPXDI2  0.189 0.267 -0.459 -0.0724  -0.0623  0.121 -0.0284 -0.00765  0.0146 
#> 4 BPXSY2  0.228 0.352  0.248  0.0106   0.0458 -0.116 -0.0335  0.129   -0.279  
#> 5 BPXDI1  0.192 0.262 -0.432 -0.0645  -0.0549  0.109 -0.0266 -0.0253   0.0381 
#> 6 BPXSY1  0.226 0.343  0.258  0.0241   0.0408 -0.104 -0.0363  0.0732  -0.188  
#> # … with 9 more variables: PC10 <dbl>, PC11 <dbl>, PC12 <dbl>, PC13 <dbl>,
#> #   PC14 <dbl>, PC15 <dbl>, PC16 <dbl>, PC17 <dbl>, PC18 <dbl>

Get the values per the feature

rotation_tibble_T <- rotation_tibble %>%
  pivot_longer(-Feature, names_to = 'variable', values_to = 'value') 

rotation_tibble_T %>%
  head()
#> # A tibble: 6 × 3
#>   Feature variable   value
#>   <chr>   <chr>      <dbl>
#> 1 BPXDI3  PC1       0.183 
#> 2 BPXDI3  PC2       0.259 
#> 3 BPXDI3  PC3      -0.469 
#> 4 BPXDI3  PC4      -0.0709
#> 5 BPXDI3  PC5      -0.0571
#> 6 BPXDI3  PC6       0.119

Plot the results of the feature’s contribution to the PC - lets do the 1st below:

rotation_tibble_T %>%
  filter(variable == paste0("PC", 1)) %>%
  ggplot(aes(x = Feature, y = value)) +
  geom_bar(stat = "identity") +
  coord_flip() +
  ylab("Relative Importance")

10.6.3.1 proc.pca

We can functionalize the entire above process and enhance the proportion of variance explained graph with a ggplot:

proc.pca <- function(data ){
  
  # fit PCA model 
  data.pca <- prcomp(data, 
                      center=TRUE,
                      scale=TRUE)



 biplot_function <- function(choices = c(1,2) , # these are the things I probably want to pass into biplot
                              arrows_colour = "red",
                              arrows_size = 1,
                              arrows_textsize = 4, # the ... should pass anything else 
                              ...){
    AMR::ggplot_pca(data.pca,
                    choices = choices,
                    arrows = TRUE,
                    arrows_colour = arrows_colour, # I think Red is easier to see on Black
                    arrows_size = arrows_size, # bigger arrows
                    arrows_textsize = 4, #bigger text size 
                    ...)
   }

 
  # Proportion of variance explained
  var_exp <- data.pca$sdev^2
  
  pct_var_exp <- var_exp/sum(var_exp)

  Prop_Var_Explained_df <- as_tibble(cbind(var_exp ,pct_var_exp))

  Prop_Var_Explained_df$PC <- 1:nrow(Prop_Var_Explained_df)

  Prop_Var_Explained_df <- Prop_Var_Explained_df %>%
    mutate(cum_pct = cumsum(pct_var_exp)) %>%
    select(PC, var_exp, pct_var_exp, cum_pct)

  # scree plot 
  scree_plot <- Prop_Var_Explained_df %>%
    ggplot(aes(x=PC, y=cum_pct)) +
    geom_point() +
    geom_smooth()

  # PC_var_Explained_bar
  min_cum_pct <- min(Prop_Var_Explained_df$cum_pct)

  PC_var_Explained_bar <- function(variance_cap = 0.8){
  
    pc_var2 <- Prop_Var_Explained_df %>%
      filter(cum_pct <= max(variance_cap, min_cum_pct))

    PC_var_Explained_bar <- ggplot(pc_var2, aes(x = reorder(PC, pct_var_exp), y = pct_var_exp)) +
      geom_bar(stat = "identity") +
      scale_y_continuous(labels = scales::percent) +
      coord_flip() +
      labs(x = "Principal Components", y = "% Variance Explained")

    return(PC_var_Explained_bar)
    }

  #Feature_Imp_PC
   
   # eigenvectors
  rotation_tibble <- as_tibble(A_DATA_2.pca.model$rotation , rownames='Feature')
    
   # get the values per the feature  
  rotation_tibble_T <- rotation_tibble %>%
    pivot_longer(-Feature, names_to = 'variable', values_to = 'value')

    # here's a nice plot of the feature's contribution to the PC 
  Feature_Imp_PC <- function(PC_Num = 1){
    rotation_tibble_T %>%
      filter(variable == paste0("PC", PC_Num)) %>%
      mutate(Feature = reorder(Feature, value)) %>%
      ggplot(aes(x = Feature, y = value)) +
      geom_bar(stat = "identity") +
      coord_flip() +
      ylab("Relative Importance") +
      labs(title = paste0("PC",PC_Num))
    }

#QED

return(list(PCA_Sum = summary(data.pca) ,
            Prop_Var_Explained_df = Prop_Var_Explained_df,
            scree_plot = scree_plot,
            biplot = biplot_function, 
            PC_var_Explained_bar = PC_var_Explained_bar,
            Feature_Imp_PC = Feature_Imp_PC)
       ) 
}
10.6.3.1.1 test proc.pca

Now we can test our function:

OUTPUT.proc.pca <- proc.pca(PCA.train %>% select(all_of(features_65_num$feature)))

Let’s check out the Relative Feature Importance in PC8, for instance:

OUTPUT.proc.pca$Feature_Imp_PC(8)

Again note how most of the variance is explained by the PC1:

OUTPUT.proc.pca$PC_var_Explained_bar(1)

Also note the high Feature Relative Importance of features like BMXWT , Age and BMXBMI in this graph in Figure below:

OUTPUT.proc.pca$Feature_Imp_PC(1)
Feature Relative Importance - PC1

(#fig:out-proc-pca-FE1 )Feature Relative Importance - PC1

and the corresponding magnitude and direction of the vector in the plot in Figure below:

OUTPUT.proc.pca$biplot(c(1,2))  +
  coord_cartesian(ylim=c(-2.5,2.5))
biplot PC1 V PC2

Figure 10.1: biplot PC1 V PC2

At the same time, note the above magnitude and direction of BPXPLS corresponding to the negative feature relative importance in PC2 in Figure below:

OUTPUT.proc.pca$Feature_Imp_PC(2)

Getting back on track, we recall

OUTPUT.proc.pca$Prop_Var_Explained_df %>%
  filter(3 <= PC & PC <= 7 ) %>%
  kbl() %>%
  kable_paper("striped", full_width = F) %>%
  row_spec(3, bold = T, color = "white", background = "#D7261E")
PC var_exp pct_var_exp cum_pct
3 1.8172379 0.1009577 0.6640650
4 1.2389422 0.0688301 0.7328952
5 0.9966022 0.0553668 0.7882619
6 0.8499791 0.0472211 0.8354830
7 0.8124173 0.0451343 0.8806173

So knowing 5 Principal Components accounts for about 84.3% of the variance of the data observed in the PCA.train dataset.

10.6.4 Modeling with PCs

We will quickly compare models using:

  • all of the numeric features
  • the first 5 PCs
  • 5 random features

First, we’ll use the predict to predict the PCAs onto PCA.train, we then attach those predictions to PCA.train with the cbind:

PCA.PCA.train <- cbind(PCA.train, predict(A_DATA_2.pca.model, PCA.train))

PCA.PCA.train %>%
  glimpse()
#> Rows: 62,105
#> Columns: 42
#> $ SEQN                 <dbl> 46160, 7875, 29649, 30336, 78095, 91585, 49315, 4…
#> $ DIABETES             <dbl> 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
#> $ Gender               <chr> "Female", "Female", "Female", "Female", "Female",…
#> $ Race                 <chr> "White", "White", "Black", "White", "Other Hispan…
#> $ Family_Income        <chr> "$ 0 to $ 4,999", NA, NA, NA, "$ 0 to $ 4,999", "…
#> $ BPXDI3               <dbl> 64.00000, 76.00000, 66.11492, 68.00000, 90.00000,…
#> $ BPXSY3               <dbl> 100.0000, 90.0000, 118.8599, 116.0000, 212.0000, …
#> $ BPXDI2               <dbl> 70.00000, 72.00000, 66.05193, 68.00000, 98.00000,…
#> $ BPXSY2               <dbl> 102.0000, 94.0000, 119.4753, 118.0000, 200.0000, …
#> $ BPXDI1               <dbl> 70.00000, 80.00000, 65.88837, 70.00000, 92.00000,…
#> $ BPXSY1               <dbl> 104.0000, 96.0000, 119.5301, 118.0000, 204.0000, …
#> $ BMXLEG               <dbl> 42.50000, 38.50000, 38.95650, 37.90000, 36.40000,…
#> $ BPXML1               <dbl> 130.0000, 120.0000, 146.0224, 150.0000, 220.0000,…
#> $ BPXPLS               <dbl> 82.00000, 94.00000, 76.42917, 64.00000, 84.00000,…
#> $ PEASCTM1             <dbl> 484.0000, 690.0000, 126.0000, 651.0000, 821.0000,…
#> $ BMXWAIST             <dbl> 82.60000, 92.30000, 51.70000, 79.60000, 77.70000,…
#> $ BMXBMI               <dbl> 24.58000, 26.23000, 15.37000, 24.01000, 21.50000,…
#> $ BMXHT                <dbl> 163.5000, 163.7000, 116.6000, 147.6000, 156.0000,…
#> $ BMXARMC              <dbl> 29.20000, 31.90000, 17.70000, 23.80000, 23.10000,…
#> $ BMXARML              <dbl> 36.30000, 35.70000, 23.00000, 31.20000, 33.40000,…
#> $ Poverty_Income_Ratio <dbl> 0.29, 4.51, 2.15, 5.00, 0.02, 3.31, 0.57, 1.36, 1…
#> $ BMXWT                <dbl> 65.70000, 70.30000, 20.90000, 52.30000, 52.40000,…
#> $ Age                  <dbl> 19, 14, 5, 48, 51, 42, 23, 10, 38, 14, 80, 81, 44…
#> $ DIABETES_factor      <fct> 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
#> $ PC1                  <dbl> -0.8752034, -0.5059119, -3.6213223, -0.2741463, 5…
#> $ PC2                  <dbl> -1.357014885, -2.061359525, 2.470355725, 0.563217…
#> $ PC3                  <dbl> -1.5343935, -2.9989493, -0.2988726, -0.1222763, 2…
#> $ PC4                  <dbl> -0.27355317, -0.87481013, 0.22573202, 1.12254192,…
#> $ PC5                  <dbl> 1.41675221, -1.48805756, 0.38779207, -1.78643532,…
#> $ PC6                  <dbl> 0.02359763, -0.95201204, -0.54183187, 0.29288089,…
#> $ PC7                  <dbl> -0.68676342, -0.21594779, 0.51125002, 0.67567141,…
#> $ PC8                  <dbl> -0.56022967, 0.13797055, -0.24147595, 0.10008451,…
#> $ PC9                  <dbl> 0.12384792, 0.35119581, -0.06303190, 0.29760064, …
#> $ PC10                 <dbl> 0.17544669, 0.09482743, 0.07976258, 0.50663257, -…
#> $ PC11                 <dbl> -0.253751180, -0.475424150, 0.062030753, 0.028768…
#> $ PC12                 <dbl> 0.1393515881, 0.0479600873, 0.2915428526, -0.2226…
#> $ PC13                 <dbl> -0.316442862, 0.218737608, 0.003815722, 0.0271017…
#> $ PC14                 <dbl> -0.02763135, -0.10887048, 0.01630495, 0.09848579,…
#> $ PC15                 <dbl> 0.02440551, -0.20997949, 0.14573544, 0.11248075, …
#> $ PC16                 <dbl> -0.0213528612, 0.2328745767, -0.0009075528, 0.058…
#> $ PC17                 <dbl> 0.008782960, 0.097489083, 0.011334128, -0.2087617…
#> $ PC18                 <dbl> -0.122097162, 0.007710023, 0.132307401, -0.144167…

Recall our features were

features_65_num$feature
#>  [1] "BPXDI3"               "BPXSY3"               "BPXDI2"              
#>  [4] "BPXSY2"               "BPXDI1"               "BPXSY1"              
#>  [7] "BMXLEG"               "BPXML1"               "BPXPLS"              
#> [10] "PEASCTM1"             "BMXWAIST"             "BMXBMI"              
#> [13] "BMXHT"                "BMXARMC"              "BMXARML"             
#> [16] "Poverty_Income_Ratio" "BMXWT"                "Age"

We can make a formula:

features_plus <- paste0(features_65_num$feature, collapse = " + ")
features_plus
#> [1] "BPXDI3 + BPXSY3 + BPXDI2 + BPXSY2 + BPXDI1 + BPXSY1 + BMXLEG + BPXML1 + BPXPLS + PEASCTM1 + BMXWAIST + BMXBMI + BMXHT + BMXARMC + BMXARML + Poverty_Income_Ratio + BMXWT + Age"

feature_fomula <- paste0("DIABETES_factor ~ ", features_plus)
feature_fomula
#> [1] "DIABETES_factor ~ BPXDI3 + BPXSY3 + BPXDI2 + BPXSY2 + BPXDI1 + BPXSY1 + BMXLEG + BPXML1 + BPXPLS + PEASCTM1 + BMXWAIST + BMXBMI + BMXHT + BMXARMC + BMXARML + Poverty_Income_Ratio + BMXWT + Age"

Let’s also choose 5 random features for good measure

set.seed(86753094)
feature_rand_5_formula <- paste0("DIABETES_factor ~ ", 
                                 paste0(sample(features_65_num$feature, 5, replace = FALSE ), 
                                        collapse = " + "))
feature_rand_5_formula
#> [1] "DIABETES_factor ~ BMXLEG + BPXSY3 + Poverty_Income_Ratio + BMXHT + PEASCTM1"

And now we can train our three models:

logit_PCA <- glm(DIABETES_factor ~ PC1 + PC2 + PC3 + PC4 + PC5,
                 data = PCA.PCA.train,
                 family = binomial(link = 'logit'))

logit_features <- glm(as.formula(feature_fomula),
                      data = PCA.PCA.train,
                      family = binomial(link = 'logit'))

logit_rand_5 <- glm(as.formula(feature_rand_5_formula),
                     data = PCA.PCA.train,
                     family = binomial(link = 'logit'))

There is an issue: the test set does not know what it’s PCAs are at this moment, the PCA model was trained on the training set. Therefore, we will need to apply the PCAs model to the test set to get the predicted PCAs:

PCA.PCA.test <- cbind(PCA.test, predict(A_DATA_2.pca.model, PCA.test)) 

We can utilize our helper from the last chapter,

NOTE THE CHANGES MADE BELOW

we added additional parameters for the target and the level, now this helper-function can be utilized with other data-frames that do not contain the column DIABETES_factor, this will still add on three additional columns to the data frame to be scored probs, pred and pred_factor where pred is set to 1 if over the mean probability score of the target at the level in the training dataset.

logit_model_scorer <- function(my_model, my_data, target , level){ 
  # extracts models name 
  my_model_name <- deparse(substitute(my_model))
  
  enquo_target <- enquo(target)
  
  # store model name into a new column called model
  data.s <- my_data %>%
    mutate(model = my_model_name)
  
  # store the training data someplace
  train_data.s <- my_model$data
  
  # score the training data 
  train_data.s$probs <- predict(my_model, 
                                train_data.s, 
                                'response')
  
  # threshold query
  threshold_value_query <- train_data.s %>% 
                        group_by(!!enquo_target) %>%
                        summarise(mean_prob = mean(probs, na.rm=TRUE)) %>%
                        ungroup() %>%
                        filter(!!enquo_target == level)
  # threshold value                      
  threshold_value <- threshold_value_query$mean_prob
  
  # score test data
  data.s$probs <- predict(my_model, 
                          data.s, 
                          'response')
  
  # use threshold to make prediction  
  data.s <- data.s %>%
    mutate(pred = if_else(probs > threshold_value, 1,0)) %>%
    mutate(pred_factor = as.factor(pred))             
  
  # return scored data 
  return(data.s)
}

And we can get a quick comparison of the ROC Curves

10.6.5 Effectiveness of PCs as features

library('yardstick')
#> For binary classification, the first factor level is assumed to be the event.
#> Use the argument `event_level = "second"` to alter this as needed.
#> 
#> Attaching package: 'yardstick'
#> The following object is masked from 'package:readr':
#> 
#>     spec

compare_models <- bind_rows(
  logit_model_scorer(logit_PCA, PCA.PCA.test, DIABETES_factor, 1),
  logit_model_scorer(logit_features, PCA.PCA.test, DIABETES_factor, 1),
  logit_model_scorer(logit_rand_5, PCA.PCA.test, DIABETES_factor, 1),
) 


model_AUCS <- compare_models %>%
  group_by(model) %>%
  roc_auc(truth= DIABETES_factor, probs, event_level = "second") %>%
  mutate(model_AUC = paste(model , " AUC : ", round(.estimate,4)))

compare_models %>%
  left_join(model_AUCS) %>%
  group_by(model_AUC) %>%
  roc_curve(truth= DIABETES_factor, probs, event_level = "second") %>%
  autoplot()
#> Joining, by = "model"

In this instance the model with the first 5 PCAs performed better than a model with 5 features chosen at random.


Percent_Diff <- function(x,y){
   return(abs(x-y)/mean(x,y)*100) 
}


percent_diff_auc_Table <- model_AUCS %>%
  select(-model_AUC) %>%
  pivot_wider(names_from = model, values_from = .estimate) %>%
  mutate(percent_diff_auc.all_PCA = Percent_Diff(logit_features, logit_PCA)) %>%
  mutate(percent_diff_auc.PCA_rand_5 = Percent_Diff(logit_PCA, logit_rand_5)) 
  

percent_diff_auc_Table %>%
  glimpse()
#> Rows: 1
#> Columns: 7
#> $ .metric                     <chr> "roc_auc"
#> $ .estimator                  <chr> "binary"
#> $ logit_features              <dbl> 0.8827921
#> $ logit_PCA                   <dbl> 0.8496852
#> $ logit_rand_5                <dbl> 0.7806718
#> $ percent_diff_auc.all_PCA    <dbl> 3.750239
#> $ percent_diff_auc.PCA_rand_5 <dbl> 8.122242

So there’s only a 3.75% percent difference in Area between the logistic regression model with all of the features and the model with the first 5 PCs, and there is a 8.12% percent difference between the model with the first 5 PCs and a model with 5 features chosen at random.

\(~\)


\(~\)

10.7 k-means Clustering

k-means clustering that aims to partition \(n\) observations into \(k\) clusters in which each observation belonging to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster.

set.seed(657)
Sample_Id <- sample(A_DATA_2.Num.impute$SEQN, 
                    nrow(A_DATA_2.Num.impute)*.4, 
                    replace = FALSE)

DATA_65.impute.sample <- A_DATA_2.Num.impute %>%
  filter(SEQN %in% Sample_Id) %>%
  mutate_at(all_of(features_65_num$feature), scale)
#> Warning: Using `all_of()` outside of a selecting function was deprecated in tidyselect
#> 1.2.0.
#> ℹ See details at
#>   <https://tidyselect.r-lib.org/reference/faq-selection-context.html>

10.7.1 How do we estimate the number of clusters?

proc.kmeans <- function(data, k = 1:9){

kclusts <-
  tibble(k = k) %>%
  mutate(
    kclust = map(k, ~kmeans(data, .x)),
    glanced = map(kclust, glance),
    augmented = map(kclust, augment, data)
  )

kmeans_model <- function(final_k = 5){
   (kclusts %>%
     filter(k == final_k))$kclust[[1]]
}

id_vars <- colnames(kclusts)

cluster_assignments <- kclusts %>%
  unnest(cols = augmented)

vars <- setdiff(colnames(cluster_assignments), c(id_vars,'.cluster'))

within_cluster_variation_plot <- kclusts %>%
  unnest(cols = c(glanced)) %>%
  ggplot(aes(k, tot.withinss))  +
  geom_line() +
  geom_point() +
  labs(title = "Within Cluster Variation versus number of Clusters")

kmeans.pca <- cluster_assignments %>%
  select(all_of(vars)) %>%
  prcomp()

cluster_assignments_plot <- kmeans.pca %>%
  augment(cluster_assignments) %>%
  ggplot( aes(x = .fittedPC1, y = .fittedPC2, color = .cluster )) +
  geom_point(alpha = 0.8) +
  facet_wrap(~ k) +
  labs(title = "k-means clusterings")

return(list(cluster_assignments_plot= cluster_assignments_plot,
            within_cluster_variation_plot=within_cluster_variation_plot,
            kmeans_model = kmeans_model))
}
library('broom')

tic <- Sys.time()

proc.kmeans.results <- proc.kmeans(DATA_65.impute.sample %>%
                                     select(all_of(features_65_num$feature)), 
                                   k = 3:11)

toc <- Sys.time()

toc - tic 
#> Time difference of 1.97179 secs
proc.kmeans.results$cluster_assignments_plot
cluster_wgss <- function(data, nc=15){ 

clusters <- 1:nc 

wss <- purrr::map_dfr(clusters, 
                      function(N_Clusters){ 
                        wgss = sum(kmeans(data, centers = N_Clusters)$withinss) 
                        
                        tibble(N_Clusters, wgss) 
                        } ) 
} 
DATA_65.impute.sample %>%  
  select(all_of(features_65_num$feature)) %>% 
  cluster_wgss(nc=10) %>%        
  ggplot(aes(x= N_Clusters, y= wgss)) + 
  geom_point() + 
  geom_line() +  
  labs(title = "Within group Sum of Squares Plot",
        x="Number of Clusters",
        y="Within groups sum of squares") 
#> Warning: did not converge in 10 iterations

Above, we see a bend in the curve at around 5 so below we will run a kmeans experiment with (\(k\)) centers = 5.

kmeans has an additional options, here I chose 15 for the number of random starting positions:

set.seed(12345)

km <- kmeans(DATA_65.impute.sample %>% select(all_of(features_65_num$feature)) , 
             centers = 5,
             iter.max= 15,
             nstart = 15)
km
#> K-means clustering with 5 clusters of sizes 5298, 14412, 7873, 4354, 6281
#> 
#> Cluster means:
#>        BPXDI3      BPXSY3      BPXDI2      BPXSY2      BPXDI1      BPXSY1
#> 1 -1.18757431 -0.97753315 -1.21899580 -0.99079920 -1.21528212 -0.99530237
#> 2 -0.03717229 -0.31811843 -0.04569126 -0.31710079 -0.05774348 -0.30791737
#> 3  0.46523940  0.20793980  0.47323149  0.20193256  0.48459640  0.19459877
#> 4  0.74498644  1.89536565  0.79672958  1.91549832  0.82192371  1.91668911
#> 5 -0.01257841 -0.02003481 -0.01241362 -0.01760612 -0.01960191 -0.02651225
#>        BMXLEG      BPXML1      BPXPLS   PEASCTM1    BMXWAIST      BMXBMI
#> 1 -0.83034756 -0.91876984  0.57067272  0.1965214 -0.69573116 -0.69358384
#> 2  0.17445304 -0.26608589 -0.11958988  0.1863414 -0.01865886 -0.08802613
#> 3  0.39760560  0.14150239  0.02309796  0.4195544  1.17269198  1.21648161
#> 4 -0.19257897  1.78317204 -0.36077635  0.5614782  0.55100870  0.36744076
#> 5 -0.06478202 -0.02794252  0.01418170 -1.5084462 -1.22222587 -0.99251027
#>        BMXHT    BMXARMC    BMXARML Poverty_Income_Ratio       BMXWT        Age
#> 1 -0.2898939 -0.6003371 -0.2688240          -0.18203388 -0.59570920 -0.6876412
#> 2  0.3712827  0.1157080  0.3367366           0.05027904  0.09559683  0.0637058
#> 3  0.6681734  1.1599990  0.7658356           0.20253611  1.21095460  0.5397692
#> 4  0.3846618  0.4127052  0.4967846           0.06072111  0.41992904  1.3187380
#> 5 -1.7115770 -1.4992181 -1.8502216          -0.25778578 -1.52585430 -1.1568848
#> 
#> Clustering vector:
#>     [1] 2 2 2 2 3 5 3 4 2 2 4 2 2 2 5 2 4 1 2 2 3 2 3 2 2 4 2 1 4 4 4 2 5 2 5 2
#>    [37] 2 3 5 1 4 5 3 3 4 1 2 2 1 5 2 5 5 2 4 4 3 3 2 3 1 5 2 5 3 3 2 4 1 2 1 3
#>    [73] 4 2 4 2 4 1 3 2 5 1 1 1 3 2 2 5 2 4 4 2 5 2 2 5 4 2 1 1 2 2 2 3 2 1 2 2
#>   [109] 2 3 5 1 5 2 2 2 2 1 2 5 2 2 2 2 4 3 1 1 3 4 2 3 2 1 1 1 2 1 1 4 5 3 2 1
#>   [145] 3 4 2 4 5 3 4 4 2 5 1 1 2 5 5 3 1 4 2 2 1 3 5 2 2 2 5 4 2 3 4 5 5 3 5 2
#>   [181] 2 5 5 2 2 5 3 4 3 1 5 5 2 5 2 3 2 5 2 1 1 2 2 3 5 3 3 1 4 2 2 3 3 2 3 3
#>   [217] 2 2 3 5 2 4 2 2 4 1 1 4 1 5 2 4 3 3 5 2 2 3 4 5 5 3 5 2 1 5 4 5 2 5 2 1
#>   [253] 3 5 2 3 2 4 4 2 2 2 3 5 2 1 3 2 1 3 4 2 2 1 4 2 2 2 4 2 5 2 5 1 3 1 5 5
#>   [289] 2 5 2 2 3 1 1 3 5 2 3 4 2 1 1 2 5 4 2 4 3 1 2 2 2 2 5 2 2 3 5 2 3 4 5 1
#>   [325] 4 5 5 5 3 3 2 1 2 3 1 2 2 3 5 5 5 2 2 4 2 2 4 3 5 3 4 3 2 5 3 2 4 2 5 2
#>   [361] 2 3 1 4 5 2 2 1 2 4 5 2 2 2 3 3 3 3 5 4 2 3 3 3 2 2 4 1 2 2 2 3 4 2 5 2
#>   [397] 4 4 1 1 2 3 4 3 3 2 5 4 4 4 2 3 2 3 2 5 1 4 2 5 5 5 5 4 5 5 5 5 1 2 2 5
#>   [433] 1 2 2 4 2 4 5 5 2 5 2 3 4 2 4 2 3 3 3 5 1 1 5 5 3 3 1 2 3 2 5 4 2 5 1 1
#>   [469] 5 2 2 1 2 4 4 4 3 5 4 2 2 4 2 2 5 2 1 5 1 5 1 2 4 3 3 2 1 3 5 3 5 2 5 2
#>   [505] 5 5 3 2 2 3 2 4 3 3 4 2 2 1 2 2 2 5 3 1 5 1 5 3 1 2 2 5 2 3 2 5 2 2 3 4
#>   [541] 4 2 2 3 5 2 3 3 5 2 3 2 2 3 2 2 5 5 5 2 2 2 2 3 3 5 3 2 3 2 5 3 5 3 4 2
#>   [577] 2 2 2 2 3 2 1 1 2 2 2 5 2 2 1 3 3 5 3 2 4 2 3 3 2 2 2 3 2 4 1 4 5 5 2 2
#>   [613] 3 3 5 5 1 3 1 2 5 2 2 2 3 1 4 2 5 2 4 5 5 5 2 4 2 2 4 2 2 2 2 3 1 4 2 3
#>   [649] 2 4 5 3 2 3 2 3 2 1 2 3 1 2 4 1 3 1 2 1 2 1 4 1 3 2 3 2 2 2 3 2 2 1 2 1
#>   [685] 3 1 2 3 3 2 3 3 3 5 1 2 4 3 2 5 5 2 3 5 3 2 5 5 2 5 5 2 5 5 2 5 2 1 2 3
#>   [721] 5 5 1 3 5 3 5 2 2 2 2 2 1 1 3 1 2 4 5 5 3 1 4 2 3 1 2 2 1 2 2 2 1 1 3 2
#>   [757] 3 2 2 1 3 2 2 2 2 3 1 4 3 2 3 2 5 2 4 1 2 2 5 4 2 5 1 3 5 3 1 2 2 5 3 3
#>   [793] 1 5 2 2 4 3 1 3 3 3 2 4 2 2 3 2 3 2 3 2 3 2 1 5 3 1 3 2 2 2 5 2 3 5 4 1
#>   [829] 1 2 1 2 2 4 3 4 3 2 2 3 2 3 2 2 2 3 5 2 2 1 3 2 5 5 2 5 1 3 4 2 2 2 2 2
#>   [865] 2 3 5 2 5 5 2 5 2 3 2 5 5 1 3 3 4 3 2 5 2 2 1 4 1 2 4 2 1 2 1 3 1 3 5 3
#>   [901] 3 2 4 4 3 2 2 3 2 2 4 2 2 1 3 2 5 4 5 1 2 3 4 2 3 2 4 2 3 3 4 2 1 2 2 2
#>   [937] 2 5 2 2 5 2 5 5 5 3 3 5 1 2 2 1 1 2 3 2 3 2 2 2 3 1 2 2 2 5 5 2 4 5 2 2
#>   [973] 2 1 2 2 5 2 2 3 2 2 2 2 2 4 2 4 1 3 5 2 5 3 5 2 3 5 4 2 2 2 2 3 3 1 2 2
#>  [1009] 2 1 4 2 3 2 3 2 5 3 2 2 2 1 2 2 4 2 2 2 3 3 4 2 5 5 2 2 5 2 3 2 2 2 5 2
#>  [1045] 2 2 5 4 3 2 2 1 1 2 3 2 5 4 5 1 2 2 3 2 3 3 3 2 3 5 4 3 2 4 5 1 5 2 3 3
#>  [1081] 2 2 3 2 3 4 2 2 2 2 1 3 5 4 1 3 5 5 5 1 1 4 2 2 3 2 1 3 2 4 2 1 3 2 2 4
#>  [1117] 5 4 3 5 4 4 3 1 3 2 2 5 2 2 5 3 2 2 1 5 2 5 4 3 2 2 1 3 2 5 2 2 5 2 2 3
#>  [1153] 3 2 4 3 2 5 1 1 2 1 4 3 3 4 2 3 3 2 2 5 3 2 1 3 4 4 1 3 2 3 2 4 5 2 3 2
#>  [1189] 3 5 4 2 2 2 2 4 2 3 2 5 5 5 2 2 5 2 3 2 3 4 2 3 2 2 5 4 2 4 3 2 5 1 3 4
#>  [1225] 3 1 1 3 1 5 1 4 2 1 3 3 5 1 2 3 2 2 4 4 3 2 2 1 3 1 2 5 2 1 1 2 2 2 2 2
#>  [1261] 1 2 4 2 4 2 1 1 2 2 5 2 2 5 2 1 5 2 2 2 2 2 3 2 2 2 3 2 2 4 1 2 3 4 3 5
#>  [1297] 1 1 3 5 1 2 2 5 2 5 2 4 3 4 2 3 1 1 1 1 5 2 3 5 2 1 2 2 2 4 2 3 4 2 4 2
#>  [1333] 3 2 5 2 3 5 2 2 2 2 2 2 2 2 3 3 2 4 1 2 2 5 2 5 2 5 4 3 5 5 2 5 2 5 3 2
#>  [1369] 4 3 1 3 4 2 3 5 2 3 2 2 4 2 5 3 2 3 5 5 2 3 1 4 1 2 3 2 1 4 2 5 3 4 3 2
#>  [1405] 2 3 2 1 2 5 3 2 3 2 1 1 2 4 1 4 2 2 2 4 2 3 2 1 5 2 3 3 1 3 2 4 4 4 1 5
#>  [1441] 3 2 3 2 2 4 3 5 2 2 2 2 3 1 1 3 2 1 5 3 3 5 3 3 1 3 5 1 2 3 2 4 5 2 2 3
#>  [1477] 2 3 5 2 5 2 2 3 4 4 1 3 5 3 3 4 2 4 5 4 3 4 3 4 3 3 5 2 3 5 3 2 4 1 2 2
#>  [1513] 4 2 3 3 2 1 4 5 2 3 2 2 3 5 3 5 3 1 1 5 2 4 3 2 1 5 3 3 2 3 1 2 4 4 5 2
#>  [1549] 2 3 2 4 3 2 1 5 5 5 5 2 5 2 3 2 3 5 1 5 3 2 2 4 4 3 3 4 2 2 2 2 4 4 5 3
#>  [1585] 2 5 3 2 4 5 2 2 2 3 2 3 4 2 3 3 2 5 5 2 2 2 2 2 3 5 5 3 3 1 2 1 2 4 1 2
#>  [1621] 2 4 2 2 4 2 4 2 3 5 3 5 3 2 2 2 2 2 3 4 2 1 2 3 3 2 4 1 1 4 2 5 3 1 1 5
#>  [1657] 2 2 3 2 5 1 2 1 4 2 3 2 2 5 5 2 5 1 2 5 4 4 3 2 2 1 2 2 2 1 2 5 4 4 5 2
#>  [1693] 5 3 3 1 4 2 1 1 2 3 2 3 5 3 5 4 4 5 2 5 5 3 3 3 2 4 5 3 2 5 2 2 5 5 3 2
#>  [1729] 2 2 2 3 5 5 2 4 2 4 5 2 5 2 2 2 3 2 2 2 4 2 3 2 2 2 3 3 1 2 1 5 5 5 2 2
#>  [1765] 2 3 3 5 5 2 4 2 4 4 5 2 2 2 2 4 5 3 4 2 4 4 2 2 1 2 3 5 2 3 2 2 5 4 2 4
#>  [1801] 1 5 4 3 2 2 2 4 2 2 2 2 4 2 1 2 4 1 5 4 5 1 2 2 3 2 2 3 2 2 2 3 3 5 2 2
#>  [1837] 5 1 3 2 5 1 5 2 2 4 2 3 1 1 3 1 3 4 5 1 4 3 3 2 2 5 2 2 1 1 1 5 2 2 5 5
#>  [1873] 5 5 1 2 1 3 2 3 2 4 2 2 2 5 5 1 3 1 1 2 1 3 2 3 2 5 3 2 5 2 1 1 5 3 2 5
#>  [1909] 5 1 2 3 5 5 2 5 2 2 3 1 2 5 5 2 2 5 1 2 2 1 4 1 4 5 3 1 2 2 3 2 2 2 2 2
#>  [1945] 5 4 3 3 5 4 1 5 1 2 3 5 4 5 3 5 2 2 1 4 3 5 5 2 3 5 3 2 2 2 2 2 2 5 2 4
#>  [1981] 5 2 3 5 3 2 2 2 2 5 2 3 4 3 2 1 5 2 4 2 3 2 1 2 3 3 3 1 2 2 2 2 4 4 2 2
#>  [2017] 2 4 2 5 3 2 4 1 4 2 3 5 4 2 2 2 3 3 3 4 2 2 2 4 3 5 2 2 2 2 2 2 2 1 3 4
#>  [2053] 2 2 3 4 5 5 2 2 1 2 4 3 5 2 2 3 3 4 5 1 4 3 2 1 5 5 4 5 2 2 2 3 2 3 4 3
#>  [2089] 2 3 3 1 2 1 3 2 3 1 4 2 2 1 1 2 2 2 3 5 2 2 3 2 5 4 5 4 1 2 3 3 2 2 2 1
#>  [2125] 1 2 5 2 5 3 4 1 1 3 5 2 4 5 3 4 3 2 2 3 2 5 2 2 3 2 3 2 1 3 3 2 2 5 2 2
#>  [2161] 3 2 2 3 2 2 3 1 2 5 5 2 2 1 3 3 2 5 2 1 3 2 4 1 2 2 4 2 2 5 2 2 2 2 4 2
#>  [2197] 1 4 3 1 2 2 2 5 2 3 3 2 2 2 2 2 5 1 2 5 4 2 3 2 1 3 3 2 2 4 2 2 1 2 1 4
#>  [2233] 5 2 5 4 2 2 1 2 3 2 2 3 2 2 2 4 1 4 4 3 2 5 5 1 2 2 5 5 2 1 2 4 3 2 5 3
#>  [2269] 2 4 2 5 5 2 3 2 3 2 2 2 2 3 4 5 5 1 2 2 4 2 5 2 1 4 2 3 2 2 3 2 1 3 2 1
#>  [2305] 1 5 5 2 2 4 5 1 5 2 2 5 1 1 4 5 2 2 2 5 2 1 4 3 2 2 1 2 5 5 2 2 2 2 2 2
#>  [2341] 2 5 2 5 2 2 3 3 3 1 2 3 2 2 2 2 1 5 3 1 2 5 2 1 3 2 5 1 2 3 5 3 2 3 2 1
#>  [2377] 2 3 3 3 2 3 1 2 3 1 4 2 2 5 3 1 2 5 1 4 3 3 2 2 2 4 2 2 2 5 5 1 1 4 5 4
#>  [2413] 2 4 3 1 3 5 3 1 2 2 3 4 3 4 5 1 2 3 3 2 2 3 4 2 2 2 5 3 5 4 3 3 5 5 2 1
#>  [2449] 2 1 2 2 2 3 2 2 2 2 3 1 5 3 2 2 3 3 3 3 2 3 3 2 3 2 5 2 3 2 3 3 2 2 4 4
#>  [2485] 2 5 1 5 2 2 4 2 5 4 2 2 3 2 2 2 5 2 4 4 2 3 5 2 2 2 2 2 2 2 1 3 5 1 4 1
#>  [2521] 5 5 2 1 3 5 3 3 2 2 3 5 3 2 2 5 4 2 5 4 3 2 3 4 2 5 5 2 5 2 5 2 3 4 1 2
#>  [2557] 2 4 3 5 2 2 2 3 2 2 3 5 3 2 1 2 2 5 5 1 3 5 2 2 3 4 4 5 2 2 2 1 2 2 5 2
#>  [2593] 1 2 3 2 2 5 3 2 2 2 5 2 2 1 5 5 1 4 3 2 2 2 2 3 5 4 1 2 2 2 4 5 5 3 4 2
#>  [2629] 4 1 5 2 3 1 1 2 3 2 5 2 2 2 2 3 2 2 4 3 5 1 5 1 1 2 5 5 2 2 1 5 1 5 2 3
#>  [2665] 2 2 2 2 3 1 5 2 3 2 3 3 5 4 3 2 3 2 5 5 2 3 5 1 1 2 5 1 2 5 1 2 2 2 1 5
#>  [2701] 3 2 3 2 2 1 2 5 4 2 4 3 5 3 3 5 3 5 5 2 2 2 5 3 5 3 1 2 2 5 2 5 3 5 2 5
#>  [2737] 2 4 2 4 5 1 3 5 2 2 2 3 1 3 5 3 5 4 2 5 2 2 5 2 2 5 1 2 2 5 2 2 2 4 5 3
#>  [2773] 2 1 2 3 1 1 2 2 5 2 5 2 2 4 3 2 1 4 5 3 4 1 2 5 4 2 2 2 4 2 2 1 3 2 2 1
#>  [2809] 4 4 3 2 3 3 2 3 3 3 5 3 2 2 5 2 2 1 3 5 2 2 2 3 2 4 4 3 1 2 2 2 2 2 1 2
#>  [2845] 2 1 1 2 2 4 1 2 4 4 3 2 2 3 2 4 2 1 4 4 2 5 2 4 3 1 5 2 2 5 2 3 1 5 2 2
#>  [2881] 2 5 1 4 2 2 2 2 3 2 5 1 5 3 3 2 2 1 5 5 1 1 5 3 1 3 3 2 3 1 2 2 2 1 2 3
#>  [2917] 5 3 2 1 2 1 3 4 2 1 1 2 2 2 4 3 2 5 5 5 1 5 2 1 3 2 5 2 3 2 3 3 4 2 5 2
#>  [2953] 2 5 2 2 3 2 5 5 2 2 2 2 3 3 2 2 1 4 2 1 2 2 1 4 4 2 2 3 5 1 2 5 4 2 3 2
#>  [2989] 1 5 2 1 4 1 1 2 3 3 5 2 2 2 1 3 2 5 3 3 1 1 2 3 1 4 2 2 3 3 4 2 3 5 3 1
#>  [3025] 4 4 2 4 3 1 1 4 2 1 5 5 2 1 2 1 5 5 3 1 3 2 2 2 4 1 2 4 4 5 4 2 4 4 4 2
#>  [3061] 2 3 2 1 1 2 5 1 2 2 2 2 2 5 3 1 4 2 2 3 4 5 5 2 4 5 5 2 3 3 1 2 2 3 2 2
#>  [3097] 3 2 2 3 2 1 2 1 1 1 2 5 2 5 3 4 2 2 2 1 2 3 2 4 4 5 2 2 3 5 1 5 3 5 4 5
#>  [3133] 2 5 4 4 5 2 3 4 4 1 4 2 1 4 3 2 2 2 4 2 2 2 5 2 2 2 2 2 4 4 3 5 4 1 1 1
#>  [3169] 5 4 3 5 5 1 1 3 5 2 1 4 2 2 3 1 2 3 3 2 2 2 4 3 1 2 3 5 5 3 1 2 3 3 2 3
#>  [3205] 2 2 2 5 2 2 1 4 5 3 2 4 5 3 2 5 5 4 4 1 3 2 4 1 1 2 3 2 2 5 2 3 3 2 1 5
#>  [3241] 4 1 2 1 2 1 2 3 2 1 2 2 4 1 3 2 2 1 1 3 2 4 3 5 2 4 5 3 2 2 5 2 2 1 3 1
#>  [3277] 5 3 3 4 1 2 2 5 2 2 2 1 4 2 2 4 2 5 3 2 2 2 2 4 3 4 2 4 1 3 2 3 5 2 3 3
#>  [3313] 5 2 5 4 4 2 5 2 2 2 4 2 2 2 2 5 3 3 5 5 2 3 5 5 2 2 4 2 2 2 5 1 2 2 1 3
#>  [3349] 3 2 3 2 2 2 2 2 1 2 3 3 2 5 2 4 5 2 4 2 1 3 1 2 2 2 3 5 5 3 5 4 3 1 1 5
#>  [3385] 2 3 2 3 2 3 3 1 2 3 5 2 5 2 2 2 2 2 3 4 2 1 2 2 2 2 2 3 3 2 1 5 3 1 3 1
#>  [3421] 2 5 4 3 3 1 3 2 4 3 5 2 5 4 2 3 1 4 3 3 1 3 2 2 3 3 5 3 2 3 2 5 1 5 5 5
#>  [3457] 5 5 5 3 3 4 5 4 2 2 3 2 2 2 4 2 1 2 4 2 5 2 1 3 2 1 1 3 2 3 4 2 2 3 2 2
#>  [3493] 2 3 2 5 5 2 3 3 1 3 3 5 4 2 3 4 4 2 3 2 2 3 2 2 5 5 2 3 2 5 2 5 2 3 3 4
#>  [3529] 2 2 5 2 4 5 2 3 1 2 5 5 5 2 4 5 2 2 2 5 1 3 1 1 3 2 5 4 2 3 5 1 1 1 2 3
#>  [3565] 3 2 5 5 4 3 1 5 2 2 2 4 2 4 3 2 2 5 1 3 2 3 2 1 2 2 3 5 2 5 4 2 3 3 2 3
#>  [3601] 5 2 3 2 3 2 2 1 5 2 3 2 2 1 3 4 3 3 3 3 3 2 3 4 2 3 3 2 2 5 2 2 2 5 1 2
#>  [3637] 2 2 2 5 5 1 4 3 2 2 5 5 2 2 1 3 2 4 4 2 4 1 2 2 2 4 2 5 4 2 1 3 2 2 3 3
#>  [3673] 4 4 2 1 3 2 2 2 4 4 2 1 4 4 3 4 4 2 2 2 5 4 3 2 1 2 3 2 3 3 2 5 2 2 5 2
#>  [3709] 2 2 2 4 1 1 2 2 3 3 3 3 2 5 3 2 3 1 2 1 3 1 3 4 2 3 4 2 2 3 1 5 1 1 3 2
#>  [3745] 3 2 2 2 2 3 2 1 3 2 2 5 2 2 2 5 1 1 3 1 2 4 2 2 3 1 2 2 2 3 2 3 2 4 2 5
#>  [3781] 2 5 2 5 2 5 5 3 5 3 4 2 2 4 2 2 2 2 3 2 1 3 1 2 2 2 2 2 5 3 2 3 1 2 5 3
#>  [3817] 2 5 5 2 2 1 4 2 2 1 3 5 4 1 3 2 2 5 4 5 2 4 2 5 3 2 2 4 3 2 2 4 3 3 2 5
#>  [3853] 2 4 2 2 1 1 1 5 2 2 1 5 2 2 1 5 2 3 5 1 3 5 3 3 2 1 5 1 1 2 4 5 2 5 3 4
#>  [3889] 1 2 5 3 1 2 2 2 2 1 5 5 2 2 5 1 1 2 5 1 1 3 3 2 4 1 5 2 4 3 5 1 1 1 4 3
#>  [3925] 3 5 1 2 4 4 2 3 2 4 1 2 3 4 2 4 1 1 4 4 2 1 4 2 4 2 5 3 2 5 2 1 2 1 2 4
#>  [3961] 2 2 3 2 2 2 3 1 1 2 4 1 2 5 3 1 5 2 2 2 1 4 5 4 1 2 5 3 5 2 3 1 2 5 1 1
#>  [3997] 2 5 3 3 4 2 2 3 5 2 3 3 2 2 3 3 3 2 1 4 2 2 1 1 1 2 4 2 1 2 5 1 1 5 4 3
#>  [4033] 5 3 2 2 1 2 4 2 4 3 5 3 5 2 2 3 2 2 5 1 2 4 3 2 2 2 2 2 5 2 3 2 2 2 3 2
#>  [4069] 5 2 2 3 2 2 2 2 4 3 4 1 2 1 3 2 5 2 4 3 5 5 2 2 3 4 3 3 3 2 2 2 2 2 2 4
#>  [4105] 3 2 2 5 3 2 2 2 5 2 2 2 2 2 2 2 3 4 1 2 1 2 4 3 5 1 3 3 5 4 1 1 3 2 2 2
#>  [4141] 5 3 2 5 1 2 4 2 3 5 1 2 4 5 2 3 1 2 5 5 3 2 3 5 2 2 5 3 3 1 5 4 5 4 3 2
#>  [4177] 2 4 2 3 3 2 4 2 1 5 2 2 4 5 5 3 5 3 3 2 1 5 3 5 2 5 2 5 2 4 2 3 3 1 2 5
#>  [4213] 3 2 2 1 3 3 4 5 3 4 3 5 2 3 1 1 2 2 1 2 2 2 4 2 4 2 4 5 3 4 2 2 5 2 5 5
#>  [4249] 2 1 5 2 3 2 5 3 4 2 2 2 3 3 4 5 3 4 4 1 5 3 2 3 2 2 2 1 3 5 2 2 5 4 3 2
#>  [4285] 1 2 3 3 3 1 3 3 5 2 1 3 2 5 4 2 4 1 2 3 4 5 2 3 4 2 4 2 2 1 2 2 3 4 5 5
#>  [4321] 4 1 2 2 1 5 2 3 2 5 3 2 2 2 5 2 1 2 1 5 1 2 2 2 2 4 3 1 2 5 5 2 2 1 1 2
#>  [4357] 2 3 4 4 2 3 5 2 5 2 3 1 3 2 2 3 2 5 2 4 5 2 5 2 1 3 3 3 2 5 5 2 4 1 2 1
#>  [4393] 3 4 1 5 5 5 3 2 5 2 3 1 2 5 1 3 1 4 3 3 3 3 3 2 2 1 2 2 2 1 5 3 5 4 2 4
#>  [4429] 2 1 3 3 1 2 2 2 2 2 2 3 3 2 2 2 5 2 5 5 3 4 3 4 2 2 5 2 1 2 1 3 1 4 5 3
#>  [4465] 2 3 3 1 1 2 3 2 2 4 2 1 2 5 5 4 1 4 2 4 2 2 2 2 2 2 3 2 4 4 3 4 4 5 2 2
#>  [4501] 1 5 3 2 4 3 2 3 5 5 5 2 2 2 5 1 3 5 4 4 3 1 1 1 2 2 2 3 1 5 2 2 4 3 5 3
#>  [4537] 3 2 3 2 2 5 5 2 2 2 2 2 2 2 2 4 2 2 3 5 2 2 3 4 4 2 1 5 4 3 5 3 1 1 3 2
#>  [4573] 3 4 1 2 3 2 3 3 2 4 1 3 3 4 2 1 4 2 2 2 1 2 2 2 3 5 5 5 1 3 2 5 3 5 2 4
#>  [4609] 2 2 3 1 5 3 2 1 2 4 1 3 1 2 2 2 3 2 5 4 2 3 4 5 1 1 3 4 5 5 2 2 1 1 2 1
#>  [4645] 1 3 1 1 3 3 3 2 4 2 2 5 5 5 5 1 5 3 1 5 3 5 2 2 4 4 3 5 1 4 3 1 3 2 4 1
#>  [4681] 1 3 5 3 2 4 2 1 2 3 5 1 2 4 2 2 5 2 2 2 2 2 2 3 2 3 2 2 5 3 3 1 5 1 3 2
#>  [4717] 2 5 5 3 2 2 5 1 1 2 2 3 2 4 2 1 2 5 1 3 3 2 2 2 1 2 5 4 2 5 3 2 5 2 2 3
#>  [4753] 2 5 5 2 5 3 3 5 5 3 2 5 2 3 2 5 1 3 2 4 3 3 1 2 4 3 3 2 2 2 2 3 2 2 5 2
#>  [4789] 2 4 4 5 2 3 5 1 2 4 1 1 2 2 2 1 1 5 2 2 5 4 5 2 4 1 5 4 4 5 2 1 4 1 1 3
#>  [4825] 2 4 3 5 1 2 3 2 3 1 2 1 4 2 1 3 2 2 2 4 5 4 1 5 3 4 2 5 2 2 1 2 1 2 2 2
#>  [4861] 1 5 3 2 5 2 3 2 3 3 5 1 2 5 2 3 1 3 2 5 5 5 2 3 3 4 2 5 1 2 2 2 2 2 5 3
#>  [4897] 5 2 5 2 1 2 5 5 2 5 2 2 2 1 2 3 5 2 1 2 5 3 3 2 2 2 2 2 5 2 3 3 4 3 3 5
#>  [4933] 1 3 2 2 2 3 3 3 2 3 3 3 2 5 5 3 2 3 3 5 2 2 1 4 2 2 4 2 1 2 3 1 3 3 5 5
#>  [4969] 2 3 2 2 5 5 2 4 3 3 5 2 5 5 3 1 2 2 3 3 2 5 2 5 1 3 2 2 2 2 4 2 4 1 5 2
#>  [5005] 3 2 5 3 1 2 5 2 3 4 2 1 3 2 2 2 2 1 3 3 3 2 2 1 1 4 4 2 2 1 2 5 3 2 4 3
#>  [5041] 2 2 2 2 5 4 2 4 4 2 2 4 2 4 2 4 5 2 2 5 3 5 5 3 2 3 3 5 1 3 2 3 1 3 3 2
#>  [5077] 2 1 2 5 2 1 2 4 4 2 2 4 3 3 5 1 5 2 4 2 4 3 5 2 1 5 3 3 2 2 2 2 4 3 2 1
#>  [5113] 5 1 3 3 4 2 1 2 1 2 5 2 2 1 3 2 2 2 3 2 2 2 5 2 5 3 3 2 2 3 5 1 2 5 2 4
#>  [5149] 4 2 2 2 3 2 2 4 1 1 3 5 2 2 5 2 3 4 2 2 2 2 5 2 2 1 1 5 2 1 2 4 1 3 5 2
#>  [5185] 3 5 2 3 2 1 5 1 3 1 2 5 2 1 2 3 4 3 3 2 1 2 5 2 2 5 2 1 5 4 2 4 3 4 2 1
#>  [5221] 1 5 2 1 2 3 1 2 2 1 1 3 2 3 3 2 4 2 4 2 2 2 2 2 3 2 2 2 1 1 3 3 5 3 2 5
#>  [5257] 2 4 2 5 1 2 1 4 1 2 3 2 5 2 3 1 2 3 1 4 5 2 2 4 1 3 1 1 2 2 2 3 2 3 2 3
#>  [5293] 2 2 1 2 1 1 5 2 4 2 1 3 2 1 5 2 2 3 3 4 5 2 5 2 4 3 4 2 3 1 3 3 2 3 2 2
#>  [5329] 1 2 3 3 1 3 2 2 2 1 4 1 4 1 2 4 3 5 5 5 2 2 2 1 3 2 2 1 1 1 2 2 5 3 2 3
#>  [5365] 1 2 2 2 2 5 5 1 1 2 4 1 3 1 2 1 4 3 3 3 5 3 4 2 2 2 2 5 5 3 2 1 4 2 4 3
#>  [5401] 4 5 5 2 5 2 2 2 1 4 5 4 1 3 1 4 5 1 2 2 3 5 5 5 3 5 1 4 1 2 2 4 1 2 2 2
#>  [5437] 1 2 3 2 2 2 5 4 1 5 2 4 2 3 3 1 1 2 2 2 3 5 3 5 1 2 3 1 5 1 2 3 2 2 2 1
#>  [5473] 3 2 2 4 1 3 2 1 1 4 5 1 5 4 2 3 5 4 2 5 5 4 2 4 5 2 3 2 4 3 4 3 5 5 3 2
#>  [5509] 3 1 2 2 5 3 2 2 4 2 5 5 2 2 2 2 2 3 2 3 4 2 2 2 2 2 3 3 5 3 2 5 3 3 3 3
#>  [5545] 2 2 3 2 3 5 4 1 1 3 5 2 2 5 2 2 5 1 2 5 5 3 2 3 1 2 3 2 3 2 1 2 2 3 2 1
#>  [5581] 2 2 1 2 3 2 3 5 4 1 3 2 4 5 2 4 2 2 3 1 5 3 4 2 3 1 4 2 3 5 2 3 2 2 2 2
#>  [5617] 4 5 3 2 2 4 2 2 2 1 3 1 3 1 4 5 2 3 3 2 5 5 3 4 5 1 4 2 5 5 5 3 3 4 4 2
#>  [5653] 3 2 2 4 2 2 2 5 2 4 2 2 4 4 3 2 2 1 3 4 3 2 2 5 2 5 2 1 1 3 1 1 1 3 1 2
#>  [5689] 4 3 5 4 4 4 3 4 2 2 2 1 3 5 3 2 2 5 1 4 2 3 1 3 4 2 2 2 5 2 2 1 3 3 5 3
#>  [5725] 2 3 4 2 5 5 2 2 2 2 4 4 2 3 1 4 2 2 2 3 1 5 5 1 2 3 5 2 2 5 1 3 3 5 2 1
#>  [5761] 3 2 1 2 2 4 2 2 2 1 2 2 3 3 3 2 2 5 2 2 2 5 1 3 3 2 4 2 2 4 3 3 5 3 3 3
#>  [5797] 5 2 3 2 1 5 4 1 2 1 2 1 5 1 4 1 2 2 2 2 3 2 4 4 5 2 2 1 2 2 2 2 4 2 4 3
#>  [5833] 2 2 3 3 2 5 2 4 2 2 2 2 2 5 2 2 3 1 2 2 5 2 3 2 1 2 2 2 2 1 1 2 2 3 4 2
#>  [5869] 3 1 4 2 2 1 2 2 4 1 5 1 5 5 2 3 4 4 5 5 3 5 4 2 2 3 1 2 4 1 2 5 4 2 2 2
#>  [5905] 1 4 2 5 5 3 2 1 3 2 2 2 3 2 3 2 3 2 5 2 1 2 1 2 1 4 2 3 2 5 2 2 3 2 2 2
#>  [5941] 5 5 1 2 2 3 1 3 4 3 1 1 2 2 5 1 3 1 5 3 2 2 2 2 3 5 1 2 2 3 2 2 2 1 4 3
#>  [5977] 5 2 4 2 1 2 5 2 1 4 5 4 2 3 2 2 2 2 4 2 5 2 2 1 5 3 4 5 4 2 2 2 2 3 2 1
#>  [6013] 5 3 1 3 1 2 5 2 3 4 3 2 2 3 3 1 2 3 3 1 3 2 2 3 5 2 2 5 4 2 1 2 1 4 2 2
#>  [6049] 2 4 5 3 2 2 5 5 2 1 1 5 3 2 4 2 3 1 5 2 2 3 1 1 3 5 1 5 3 2 5 5 1 2 5 4
#>  [6085] 2 2 3 5 3 3 2 3 3 3 1 2 3 2 4 2 1 2 1 2 3 4 2 2 2 5 3 3 1 3 1 2 2 3 2 5
#>  [6121] 2 3 2 3 3 2 4 3 5 2 1 2 3 4 2 3 2 2 2 3 1 2 2 3 4 4 2 2 1 3 2 4 3 1 2 1
#>  [6157] 3 5 1 2 4 1 3 2 2 2 1 4 2 2 5 2 2 5 2 2 4 5 1 4 3 4 5 3 5 3 1 2 3 3 5 2
#>  [6193] 3 3 5 2 4 3 2 4 5 3 3 2 3 2 3 1 2 2 2 4 3 3 4 3 1 2 2 5 2 4 1 2 2 2 3 5
#>  [6229] 4 3 5 3 3 3 2 2 2 1 5 1 1 1 2 2 4 3 2 4 4 2 1 2 2 2 1 3 2 2 4 4 3 4 5 2
#>  [6265] 1 4 1 1 2 2 1 2 2 5 2 1 2 2 3 2 3 2 3 2 5 3 3 1 5 1 2 2 3 2 2 2 4 3 2 3
#>  [6301] 5 5 1 1 2 1 2 5 4 1 2 1 2 5 2 2 5 2 5 2 1 4 2 1 2 4 1 4 2 2 2 2 2 2 3 3
#>  [6337] 5 2 2 4 2 4 2 5 5 5 3 1 2 1 4 1 4 3 2 2 2 2 3 4 2 1 5 2 2 5 4 2 2 3 2 2
#>  [6373] 4 5 3 3 3 3 4 1 1 1 2 1 4 1 5 1 2 2 2 4 1 2 1 1 2 3 2 2 5 4 5 2 1 3 3 2
#>  [6409] 2 2 2 3 5 3 2 3 3 2 2 1 2 5 2 2 3 2 3 5 2 2 4 5 5 3 3 3 5 2 2 2 3 4 3 3
#>  [6445] 1 4 5 3 5 2 3 5 3 2 4 2 4 1 1 3 2 2 2 2 5 5 2 2 3 1 1 2 2 2 2 3 1 3 2 3
#>  [6481] 1 4 2 2 2 2 2 5 2 2 3 2 1 4 3 3 5 2 4 3 2 3 3 3 2 1 1 2 2 1 2 1 3 4 5 2
#>  [6517] 1 2 2 2 3 3 2 2 3 4 2 3 2 2 3 4 5 2 3 3 2 2 5 5 2 2 3 1 3 2 2 1 3 2 2 1
#>  [6553] 4 3 4 2 4 3 3 3 4 2 2 1 5 1 2 2 2 5 3 2 5 3 4 2 5 1 1 3 2 1 5 2 2 2 1 1
#>  [6589] 1 2 4 5 2 2 2 2 3 2 2 5 2 2 2 2 2 1 3 2 2 5 1 2 2 2 5 1 5 2 1 5 2 4 3 5
#>  [6625] 3 5 2 5 1 2 5 5 2 4 2 2 1 3 2 2 1 1 2 2 4 3 3 2 2 3 2 2 2 5 1 2 2 2 2 1
#>  [6661] 4 5 3 4 5 1 1 3 3 1 1 2 3 2 5 2 5 1 3 4 2 5 1 2 5 4 5 3 5 1 2 1 2 4 1 1
#>  [6697] 4 2 2 1 2 2 5 3 4 5 3 4 2 5 2 2 2 5 5 3 1 2 2 3 5 2 3 1 4 5 1 2 2 3 2 3
#>  [6733] 5 1 2 2 5 2 2 5 1 3 2 2 4 3 4 2 1 4 5 2 2 1 5 3 2 2 4 5 2 4 3 5 1 4 2 3
#>  [6769] 5 2 3 2 2 3 2 4 5 4 1 3 2 4 3 4 1 1 2 5 3 1 1 3 3 2 2 2 2 2 3 1 2 2 2 4
#>  [6805] 4 2 1 5 2 3 4 5 2 2 2 2 1 2 2 2 2 3 1 2 1 1 3 3 2 3 1 5 3 2 3 2 2 5 3 4
#>  [6841] 1 3 2 5 1 5 2 2 2 2 5 3 3 2 5 2 2 5 4 4 4 2 5 4 2 3 2 2 5 2 1 2 2 5 5 4
#>  [6877] 5 2 2 3 2 5 2 3 2 2 4 5 3 2 3 2 3 3 2 5 1 2 2 4 2 3 3 2 3 3 2 2 4 1 1 2
#>  [6913] 5 2 2 4 4 2 5 1 5 3 1 2 4 3 5 3 5 2 3 2 5 4 5 2 5 4 2 5 1 5 2 2 2 5 2 3
#>  [6949] 4 4 2 2 3 2 1 3 2 3 2 2 3 4 2 1 2 5 2 2 2 1 5 5 2 5 4 5 3 3 2 2 1 4 4 2
#>  [6985] 1 2 3 1 2 1 2 1 2 2 2 2 1 2 2 4 4 2 2 3 2 1 2 2 1 2 2 2 2 5 2 4 3 5 5 3
#>  [7021] 1 1 3 2 3 2 4 1 3 2 5 2 1 3 3 3 1 2 3 3 2 5 2 2 2 5 3 4 2 3 5 3 4 5 5 2
#>  [7057] 2 4 5 2 3 5 2 4 2 2 1 1 5 3 3 2 2 3 2 5 5 5 3 1 1 1 2 2 4 3 2 2 4 2 3 2
#>  [7093] 2 5 2 4 5 3 2 4 2 2 3 5 3 2 2 5 5 1 4 2 4 2 3 1 5 2 5 3 2 3 3 1 2 1 2 1
#>  [7129] 1 3 2 1 2 2 2 5 1 5 2 1 5 4 2 3 3 1 4 2 2 4 2 5 2 5 3 1 3 1 5 1 3 2 3 1
#>  [7165] 4 2 5 3 1 2 1 2 5 4 3 5 4 3 5 2 2 2 4 5 5 2 3 1 1 2 2 2 5 5 2 3 2 3 4 2
#>  [7201] 4 2 5 5 2 2 2 5 2 1 2 2 1 2 2 5 2 2 2 2 5 4 4 3 1 2 3 4 2 5 2 5 5 2 5 2
#>  [7237] 2 1 2 2 4 2 1 3 2 2 2 1 4 2 5 2 5 5 3 2 5 5 2 4 2 2 3 5 1 1 2 5 2 3 1 2
#>  [7273] 4 3 2 5 2 3 5 3 2 1 3 3 1 1 2 3 1 2 4 4 1 1 5 5 4 3 3 2 2 2 4 2 3 3 3 2
#>  [7309] 3 3 2 2 2 5 2 1 3 1 5 4 2 2 3 3 5 2 2 3 3 3 3 2 2 5 2 4 2 4 3 1 3 1 3 3
#>  [7345] 1 3 2 3 2 5 3 2 4 3 2 2 2 4 4 3 2 1 3 2 1 1 4 3 5 3 3 5 1 5 2 3 5 2 1 4
#>  [7381] 5 1 3 2 4 2 1 2 2 2 3 2 2 2 1 2 2 4 3 4 5 5 5 5 5 2 3 5 2 5 1 5 5 1 3 4
#>  [7417] 5 5 3 1 5 1 3 2 2 3 2 2 2 4 4 3 4 4 2 3 2 2 4 5 2 5 2 2 3 2 1 2 5 1 2 2
#>  [7453] 5 1 4 3 2 3 4 1 2 5 5 2 3 1 2 2 3 3 4 5 3 3 3 2 5 5 3 5 3 2 2 5 5 2 3 5
#>  [7489] 3 2 4 2 2 3 3 5 3 5 2 2 5 3 1 2 3 2 3 1 2 4 5 3 2 2 3 5 5 2 2 4 4 5 3 3
#>  [7525] 5 2 1 4 2 2 2 3 2 3 5 3 4 1 5 1 3 4 2 3 3 2 5 2 2 2 2 2 3 5 2 2 2 2 1 3
#>  [7561] 3 4 5 1 2 2 2 1 3 5 3 5 2 2 3 4 3 1 5 2 4 2 4 2 2 2 1 5 5 2 3 2 3 1 1 2
#>  [7597] 4 4 2 4 2 5 4 1 5 2 1 3 5 3 2 2 2 2 5 2 2 2 3 5 2 2 3 3 4 1 1 1 2 3 3 5
#>  [7633] 2 2 3 5 3 1 3 2 3 1 2 5 2 1 5 3 3 4 3 5 2 2 4 1 2 3 4 2 2 3 2 1 5 5 5 4
#>  [7669] 4 5 2 3 3 2 5 3 2 4 5 5 2 3 3 3 2 5 4 2 5 2 3 2 4 3 5 2 1 2 5 2 3 5 4 4
#>  [7705] 2 3 1 5 4 2 4 1 3 2 1 3 4 3 3 5 2 3 3 3 2 2 2 2 2 1 3 3 2 1 2 4 5 5 2 2
#>  [7741] 3 1 1 2 2 3 3 4 3 2 2 1 1 1 2 3 1 3 2 1 2 2 2 2 2 1 2 2 1 1 5 1 5 2 2 3
#>  [7777] 1 3 2 5 3 2 2 4 5 4 5 3 4 2 2 3 3 4 3 3 2 5 2 3 1 2 2 2 5 2 4 4 2 3 3 2
#>  [7813] 2 3 1 5 2 2 1 5 2 5 2 1 4 1 2 5 1 2 3 2 2 5 3 5 5 5 1 5 2 2 4 3 2 1 3 2
#>  [7849] 2 2 2 2 3 3 1 3 3 2 3 2 5 3 3 1 5 5 2 4 1 2 2 1 2 2 2 5 4 5 1 2 4 5 5 5
#>  [7885] 5 2 4 2 1 3 2 2 3 1 1 3 5 2 4 2 5 2 5 2 2 3 2 5 1 2 3 2 5 5 3 5 2 3 4 2
#>  [7921] 2 4 3 1 3 3 3 2 2 2 3 2 1 5 3 3 2 2 2 2 2 4 4 2 2 2 1 3 3 1 5 2 2 2 2 2
#>  [7957] 3 1 3 3 2 3 2 4 1 2 2 2 2 1 4 5 2 2 3 2 4 4 2 2 3 3 1 3 3 2 5 2 1 3 2 3
#>  [7993] 2 2 3 2 2 1 2 3 2 4 2 1 4 2 2 2 2 2 2 5 2 2 3 1 2 4 3 2 2 2 2 2 1 2 2 2
#>  [8029] 2 3 3 1 5 3 2 5 3 3 2 5 2 2 1 4 4 2 2 4 2 3 1 4 2 1 3 1 5 1 2 1 2 2 2 3
#>  [8065] 3 3 5 4 3 1 2 4 1 3 2 2 2 5 2 2 4 5 2 2 2 5 5 3 3 3 3 2 1 2 3 3 2 3 4 5
#>  [8101] 2 2 5 1 5 3 1 1 2 1 2 5 1 3 1 2 4 2 4 5 2 2 2 4 2 1 1 1 2 2 2 1 3 1 2 3
#>  [8137] 5 3 2 2 4 5 3 5 5 3 2 2 5 5 1 4 5 3 3 3 2 3 2 3 3 2 4 1 2 5 4 2 5 1 5 4
#>  [8173] 1 2 2 3 5 2 2 4 1 5 1 1 2 3 3 5 3 1 4 1 3 2 3 5 2 2 4 2 5 5 3 4 5 2 1 2
#>  [8209] 2 5 1 1 1 2 1 5 3 2 2 2 2 3 2 4 1 2 4 2 4 2 5 2 1 2 2 3 4 1 2 2 3 2 5 1
#>  [8245] 1 2 3 2 5 2 2 2 4 5 2 3 1 2 1 5 3 4 3 1 3 2 4 2 2 2 2 5 1 2 2 5 3 2 2 5
#>  [8281] 3 4 3 5 3 5 2 4 3 5 3 2 2 2 2 3 2 3 3 3 4 5 2 3 2 5 2 2 2 1 5 3 3 2 4 5
#>  [8317] 4 2 3 1 3 5 4 3 5 4 2 2 3 5 4 2 2 2 3 1 5 5 3 2 2 5 5 5 5 3 2 2 2 3 2 2
#>  [8353] 4 4 5 2 4 3 2 1 2 2 1 5 3 1 2 2 3 1 3 2 3 5 3 2 1 1 2 5 5 1 5 3 2 2 2 2
#>  [8389] 5 2 2 5 4 4 2 2 4 3 1 4 5 3 5 3 2 2 2 5 5 2 2 2 2 2 2 5 3 2 1 5 4 4 2 2
#>  [8425] 3 4 3 4 3 2 3 2 4 1 2 2 2 2 2 2 4 2 2 5 1 2 2 3 2 3 4 5 3 3 2 1 3 2 4 3
#>  [8461] 4 2 3 2 2 2 1 3 5 2 2 2 2 5 2 4 1 3 2 2 4 3 2 3 2 5 3 1 3 1 2 5 2 1 2 5
#>  [8497] 2 5 3 4 5 1 1 2 2 5 2 1 3 2 2 4 3 2 1 2 2 2 5 3 2 2 2 2 3 5 1 3 1 3 4 1
#>  [8533] 3 3 2 3 2 1 2 1 2 2 2 5 3 1 2 5 3 5 5 4 5 3 1 4 1 2 2 5 2 2 1 3 4 5 2 1
#>  [8569] 5 4 2 2 5 2 3 2 3 2 5 3 4 2 3 2 4 2 4 3 5 4 5 4 2 3 4 4 3 2 2 5 2 1 3 2
#>  [8605] 4 5 2 4 1 4 2 1 3 2 2 3 5 5 1 3 3 2 3 3 4 2 4 4 2 2 2 2 5 2 4 2 2 2 1 4
#>  [8641] 3 2 2 3 3 3 4 3 2 3 2 3 1 2 2 4 2 2 3 3 2 3 5 3 1 5 2 2 4 3 2 4 4 2 3 3
#>  [8677] 1 2 3 1 3 5 3 5 1 3 3 4 2 3 3 2 2 3 4 3 1 1 5 5 2 4 2 5 5 5 5 2 3 2 5 3
#>  [8713] 2 1 1 3 5 4 5 3 3 3 1 1 4 2 3 1 2 2 3 5 3 2 1 5 1 1 3 3 2 3 5 4 2 3 3 5
#>  [8749] 2 2 3 3 2 2 2 1 2 1 5 5 2 1 4 2 1 5 3 2 2 2 4 3 3 5 2 5 1 1 3 3 2 2 2 1
#>  [8785] 2 3 2 3 1 3 1 2 2 1 5 1 1 2 1 3 2 2 1 1 5 3 1 2 3 3 1 1 1 2 5 3 2 1 2 2
#>  [8821] 2 2 2 1 2 2 5 1 1 2 4 5 3 2 1 5 3 2 3 3 5 5 5 3 2 2 2 3 3 2 2 5 4 2 2 2
#>  [8857] 3 5 4 1 1 3 3 3 3 2 1 2 1 2 5 2 1 2 5 1 5 2 5 5 2 2 2 1 5 2 5 2 5 1 3 5
#>  [8893] 2 2 2 2 2 5 2 2 5 2 3 4 2 2 1 2 3 2 2 1 3 5 2 3 5 1 3 2 1 3 3 3 3 4 1 2
#>  [8929] 3 5 4 3 5 3 2 4 2 1 1 2 3 1 2 2 5 3 3 3 4 5 1 2 2 2 5 1 2 1 5 4 2 1 4 4
#>  [8965] 3 2 3 5 5 1 5 3 5 2 2 4 4 5 2 2 2 1 3 5 2 2 2 2 5 3 4 3 2 1 1 2 5 2 3 5
#>  [9001] 5 2 2 3 2 2 4 3 5 3 2 2 2 4 3 5 3 1 1 3 4 2 1 2 2 4 2 3 2 4 4 5 2 4 3 3
#>  [9037] 1 2 3 2 2 4 1 2 5 2 1 3 5 2 3 1 2 2 4 5 3 2 3 5 4 5 4 2 4 1 1 5 2 4 3 1
#>  [9073] 3 2 2 2 2 2 4 5 4 3 2 3 4 5 3 2 1 5 2 1 2 4 3 2 3 1 4 1 2 4 5 4 3 3 2 3
#>  [9109] 2 2 2 5 5 2 5 2 3 2 2 2 3 4 4 2 2 2 2 3 2 4 3 2 3 2 2 4 2 2 5 5 3 2 5 2
#>  [9145] 5 5 2 3 2 3 2 1 3 3 4 4 2 2 2 2 3 1 3 2 4 4 3 1 2 2 2 1 2 2 2 3 3 3 4 4
#>  [9181] 3 4 3 2 1 2 3 3 3 3 3 2 1 3 5 5 3 2 5 5 3 1 2 4 2 5 3 4 4 5 3 3 3 2 2 4
#>  [9217] 5 1 2 1 1 1 5 2 2 1 4 3 2 3 3 2 1 1 5 4 5 3 3 2 2 2 4 2 2 3 4 2 2 1 5 5
#>  [9253] 2 5 2 2 3 2 2 2 2 5 2 2 1 1 1 2 2 5 3 2 2 1 5 4 2 2 2 5 4 3 2 1 2 3 3 2
#>  [9289] 3 3 2 2 2 2 5 1 2 5 3 1 2 3 3 2 2 3 2 2 2 1 1 2 3 1 5 4 1 3 2 3 1 5 3 2
#>  [9325] 4 2 1 2 3 2 3 4 5 4 2 2 3 2 4 2 3 4 2 2 2 1 2 2 2 5 2 2 1 2 2 3 5 5 2 2
#>  [9361] 3 3 5 3 4 3 5 2 1 2 5 1 5 3 4 4 2 2 2 2 2 2 3 3 3 2 2 2 5 5 2 1 5 3 2 1
#>  [9397] 4 2 4 1 1 2 2 2 5 5 5 3 4 5 5 2 3 2 2 3 2 1 2 5 2 2 1 5 4 2 5 2 2 5 5 2
#>  [9433] 4 2 2 2 2 5 2 3 3 4 1 3 5 3 5 3 2 2 2 3 2 2 3 1 3 5 3 1 3 5 4 2 5 4 4 1
#>  [9469] 1 5 4 4 1 2 3 5 5 3 5 2 3 2 5 3 1 2 3 2 2 3 1 5 2 2 2 2 3 2 2 5 2 1 2 3
#>  [9505] 3 4 3 2 5 4 1 1 2 5 2 3 2 2 1 3 2 3 2 2 3 5 2 4 2 4 1 2 2 2 1 2 2 4 2 5
#>  [9541] 2 3 1 4 2 3 5 2 2 2 2 4 1 2 3 2 3 5 4 3 2 4 2 4 2 2 2 5 5 3 2 2 2 2 2 3
#>  [9577] 2 3 1 1 1 2 3 1 2 2 1 1 1 2 1 3 3 4 1 1 4 4 4 3 2 3 4 3 2 3 2 2 4 2 2 1
#>  [9613] 4 5 4 1 2 3 4 4 2 1 3 2 4 5 2 4 3 2 2 2 1 1 4 5 2 2 3 5 2 2 2 2 4 3 3 5
#>  [9649] 3 2 2 3 2 4 5 3 2 1 2 1 2 4 3 3 1 4 3 1 5 3 1 3 5 3 2 2 2 2 4 3 1 2 5 3
#>  [9685] 4 4 5 5 2 1 1 2 2 1 5 2 1 4 4 3 3 5 2 5 3 3 5 4 2 5 2 2 2 4 4 5 3 5 1 3
#>  [9721] 3 2 2 1 2 5 3 3 3 2 1 2 2 5 5 5 3 3 3 4 2 3 2 3 4 3 2 2 1 2 5 2 2 5 3 3
#>  [9757] 2 5 2 2 3 4 2 2 2 2 3 4 2 2 1 4 2 3 4 2 2 2 5 4 2 5 2 2 2 2 2 5 2 4 4 1
#>  [9793] 5 4 3 2 4 2 3 1 1 2 2 2 3 4 3 2 3 5 3 3 2 2 2 3 2 5 3 5 2 2 4 3 3 3 3 3
#>  [9829] 3 1 1 3 2 5 3 1 2 2 5 2 2 1 2 1 1 3 3 3 2 2 1 4 2 2 2 3 4 5 2 4 2 3 2 5
#>  [9865] 1 5 2 5 5 4 5 3 4 2 2 3 4 1 2 4 3 5 5 2 2 2 1 4 2 2 2 1 5 3 5 2 5 2 1 4
#>  [9901] 2 3 2 2 1 2 4 3 3 4 3 3 3 2 4 3 2 1 3 3 2 3 2 3 2 3 2 5 5 3 3 3 3 2 3 4
#>  [9937] 1 4 1 4 4 2 4 2 2 2 2 2 4 5 2 2 3 2 1 2 2 3 1 4 3 3 2 2 2 5 2 2 2 2 5 5
#>  [9973] 5 2 2 3 3 5 2 5 5 1 1 2 3 1 1 1 1 2 2 3 2 2 3 5 2 5 5 5 5 4 2 1 1 2 2 3
#> [10009] 2 1 5 3 3 2 2 1 4 4 5 5 5 3 1 3 3 2 5 2 2 2 4 5 3 3 4 1 2 5 5 1 2 2 1 2
#> [10045] 2 5 2 2 2 3 2 2 1 2 5 3 5 3 4 3 5 5 1 2 4 1 2 1 2 2 2 2 1 1 3 3 3 1 3 3
#> [10081] 5 3 1 4 1 4 3 2 3 3 2 3 2 3 1 2 2 2 4 2 5 3 3 2 4 3 4 4 5 2 3 2 5 1 2 2
#> [10117] 4 2 2 3 5 2 2 1 4 1 2 5 3 4 2 1 2 2 3 5 3 4 3 1 3 5 1 2 2 4 1 1 2 5 4 2
#> [10153] 2 1 2 4 3 1 4 5 3 5 2 1 5 1 1 3 2 4 2 1 2 2 5 3 2 2 2 4 3 5 3 5 1 5 3 2
#> [10189] 4 2 3 2 4 2 3 3 3 5 3 5 3 5 4 4 5 2 4 1 2 3 3 5 3 1 3 2 2 5 3 2 5 5 1 5
#> [10225] 2 2 2 5 5 3 2 3 5 4 2 5 3 2 3 3 4 3 4 3 5 2 2 2 1 2 1 3 3 2 5 3 3 2 3 4
#> [10261] 3 2 3 2 2 4 2 2 3 2 5 1 1 3 2 2 3 5 2 3 2 5 4 5 2 3 1 2 4 2 2 5 2 3 2 4
#> [10297] 4 5 3 5 2 3 1 1 2 4 5 5 2 3 1 5 3 4 3 1 2 2 3 2 4 2 1 3 2 2 3 2 4 2 2 4
#> [10333] 1 3 2 3 2 3 1 2 3 2 1 5 4 2 2 2 2 3 2 3 2 4 2 1 3 3 2 2 2 1 2 2 2 3 2 5
#> [10369] 2 5 5 5 2 5 4 2 2 3 2 1 5 2 2 4 4 2 2 3 2 2 2 2 2 2 5 4 2 1 3 5 3 1 4 3
#> [10405] 3 5 1 4 5 2 3 3 2 2 3 1 4 2 5 1 1 1 3 3 5 5 3 2 1 4 2 5 4 4 2 4 2 5 4 1
#> [10441] 2 2 3 5 2 5 2 3 1 3 2 2 3 5 1 2 2 1 2 2 3 1 5 3 2 2 2 3 2 5 3 2 2 2 2 5
#> [10477] 5 5 4 3 3 4 2 5 2 5 2 3 5 4 1 3 5 2 4 3 1 2 3 3 1 3 4 1 2 2 1 2 2 2 2 2
#> [10513] 2 4 2 1 2 3 2 1 2 3 4 5 4 2 4 3 2 5 3 1 2 2 2 5 3 1 3 1 5 3 5 3 5 2 2 3
#> [10549] 5 2 3 2 4 1 4 5 2 3 2 4 2 3 2 2 3 3 2 2 3 2 2 5 4 3 1 3 3 2 2 1 2 2 4 2
#> [10585] 4 3 2 2 2 4 2 5 2 2 1 2 2 3 4 1 2 2 3 3 3 5 5 5 1 4 2 2 1 3 2 4 5 5 3 2
#> [10621] 2 3 2 3 3 5 3 3 2 5 4 3 3 4 5 2 4 3 5 2 5 1 3 2 5 3 1 2 5 4 5 2 3 3 3 4
#> [10657] 3 1 4 2 3 1 2 3 5 3 1 3 4 2 4 2 2 4 5 1 4 2 1 1 1 3 4 2 3 4 2 2 3 4 2 5
#> [10693] 4 5 2 2 4 3 1 2 2 3 3 2 3 5 2 4 3 3 2 5 5 2 2 4 2 5 2 1 1 5 1 4 3 5 2 2
#> [10729] 4 2 1 2 3 2 2 1 5 3 4 2 2 2 2 1 3 2 3 5 2 4 3 5 2 3 2 1 1 1 5 2 3 3 5 5
#> [10765] 2 2 2 2 3 3 2 4 4 3 5 1 2 5 2 2 2 3 4 3 1 2 3 1 3 1 3 4 1 1 2 1 2 4 2 5
#> [10801] 2 2 2 2 5 4 3 5 2 3 2 4 5 4 3 2 3 4 5 3 1 5 5 2 2 3 1 5 2 2 4 5 2 2 3 2
#> [10837] 3 3 2 1 5 1 5 2 2 2 2 4 4 5 3 2 5 5 5 5 2 2 3 5 2 2 2 2 2 2 2 2 1 2 4 1
#> [10873] 5 3 2 4 2 2 2 2 1 5 2 2 2 3 3 2 4 3 2 3 1 2 3 2 2 1 3 3 1 1 5 5 1 5 2 2
#> [10909] 4 1 3 5 3 2 2 3 1 3 2 3 1 5 1 2 2 1 3 2 2 5 2 3 3 5 5 2 4 3 3 5 1 2 5 3
#> [10945] 5 3 3 4 3 5 5 2 2 5 2 4 2 3 3 3 4 3 2 2 2 5 2 3 3 1 2 1 3 4 1 2 3 2 4 5
#> [10981] 1 3 3 4 3 4 2 2 3 5 3 4 3 5 5 1 5 4 3 3 2 4 2 2 5 2 3 2 3 2 5 2 2 3 2 4
#> [11017] 2 5 1 5 5 2 2 1 3 2 4 2 2 2 1 3 3 1 3 3 2 3 4 2 3 1 2 2 3 5 4 2 2 1 2 2
#> [11053] 2 5 4 2 3 5 5 3 2 4 5 1 3 4 1 1 2 2 3 3 1 3 3 5 5 4 3 2 2 2 2 2 4 5 2 2
#> [11089] 2 2 2 4 5 5 3 3 2 2 2 3 5 1 3 5 1 5 4 2 1 5 5 1 3 2 2 2 3 3 2 3 2 3 1 2
#> [11125] 2 1 5 5 2 2 4 3 4 3 2 2 1 2 5 1 2 4 2 4 1 4 4 2 2 4 5 1 2 2 3 5 2 4 2 5
#> [11161] 2 4 2 5 3 1 5 4 5 1 2 4 3 4 4 5 3 2 2 2 2 3 2 5 2 1 5 3 3 2 5 4 5 2 5 3
#> [11197] 2 3 2 2 4 5 5 3 3 1 2 3 3 2 3 2 3 2 2 2 2 2 2 4 3 2 3 3 3 2 2 4 3 5 3 2
#> [11233] 3 3 3 2 5 3 5 2 2 2 1 2 1 5 2 5 5 3 2 4 2 2 1 3 3 2 2 2 3 4 3 2 4 1 2 1
#> [11269] 4 5 2 2 3 2 2 3 1 4 4 4 5 4 3 2 5 5 5 4 5 2 3 2 2 4 2 5 2 5 2 1 1 5 5 2
#> [11305] 3 5 3 5 3 1 1 2 2 3 2 5 2 4 5 5 5 2 3 2 2 5 1 5 2 2 3 1 5 4 2 3 5 3 4 3
#> [11341] 1 4 3 3 1 3 2 2 3 2 2 2 2 2 2 4 2 5 1 2 5 2 2 4 2 3 4 4 1 5 2 5 3 5 5 2
#> [11377] 3 1 2 1 3 2 3 3 2 3 5 2 1 1 4 2 3 5 2 2 5 2 4 2 2 5 4 2 1 2 2 2 3 5 1 2
#> [11413] 2 1 3 5 3 4 5 5 1 3 2 2 3 3 2 2 3 2 4 5 5 2 3 3 3 3 3 2 2 3 1 3 2 2 5 3
#> [11449] 2 2 2 2 2 3 2 5 2 3 4 4 2 5 2 3 4 5 3 1 5 2 3 3 4 2 2 1 2 5 5 4 4 3 4 3
#> [11485] 4 4 5 4 2 2 3 5 2 3 3 5 2 2 2 4 5 2 5 3 5 1 2 1 2 2 1 5 1 2 3 3 2 4 2 1
#> [11521] 2 2 3 5 5 5 3 2 5 1 5 3 5 5 4 3 3 2 3 2 5 2 4 5 2 1 2 5 2 3 2 4 2 2 3 5
#> [11557] 3 2 2 1 2 2 1 5 2 4 2 3 3 1 5 5 3 5 3 1 2 3 5 2 5 2 4 2 2 4 2 5 3 2 5 2
#> [11593] 3 2 2 5 5 3 2 2 2 4 2 3 2 2 2 1 2 3 3 1 2 2 4 2 1 1 5 3 5 1 2 2 3 2 4 2
#> [11629] 1 3 2 2 1 2 4 2 2 2 3 2 2 2 3 3 3 4 1 4 3 1 3 5 2 2 2 4 4 1 3 5 1 2 1 3
#> [11665] 2 2 4 2 5 1 2 5 5 5 4 3 2 5 5 3 5 2 2 4 3 1 3 2 5 2 3 2 2 4 1 2 2 3 1 3
#> [11701] 4 2 2 2 4 3 2 2 2 2 3 2 2 4 2 5 5 4 5 4 5 4 4 4 1 4 2 3 5 3 3 4 5 3 5 5
#> [11737] 2 3 5 2 4 3 2 2 2 2 2 3 2 2 4 3 3 1 4 2 1 2 2 2 3 5 2 2 3 4 1 2 4 2 2 4
#> [11773] 2 2 3 2 1 2 2 2 3 3 3 2 4 2 3 3 1 3 3 3 4 3 2 2 1 3 3 5 2 3 5 2 5 1 3 2
#> [11809] 3 2 2 2 2 1 1 5 2 2 1 2 3 4 3 5 5 2 2 1 3 4 2 5 2 4 3 3 2 3 5 3 5 3 5 5
#> [11845] 5 5 4 5 2 4 2 2 5 4 3 5 5 1 2 2 3 3 5 5 2 2 2 1 2 4 2 3 5 1 2 2 3 2 2 2
#> [11881] 2 2 3 5 1 5 3 1 3 2 2 2 2 2 4 2 2 1 2 5 3 2 2 1 2 1 3 5 5 3 2 2 3 2 5 2
#> [11917] 2 2 1 2 3 5 2 2 5 5 1 4 3 3 2 2 3 2 3 2 2 1 2 1 5 2 5 5 5 2 2 5 2 3 2 2
#> [11953] 2 2 5 2 5 5 5 2 2 2 3 2 2 5 3 5 5 5 5 3 2 2 1 3 2 2 2 1 5 1 5 1 5 3 1 3
#> [11989] 5 3 5 2 2 1 3 5 2 2 1 3 2 2 5 2 2 3 1 3 2 5 2 3 2 4 2 5 1 4 2 3 3 2 2 2
#> [12025] 2 2 2 3 3 2 3 1 4 2 5 2 4 2 2 2 3 1 3 4 3 2 1 5 2 5 5 4 2 2 1 3 4 2 4 3
#> [12061] 1 5 3 1 5 2 2 4 4 3 2 1 4 3 5 1 2 3 4 5 5 2 2 2 2 5 1 4 3 5 1 2 5 2 1 2
#> [12097] 4 3 5 2 4 2 4 3 2 2 2 2 4 1 2 3 2 1 3 1 5 5 2 1 2 2 2 3 5 5 2 3 2 1 3 3
#> [12133] 3 3 2 2 2 3 1 2 2 5 5 4 1 2 2 1 2 1 1 2 2 2 3 5 2 1 3 1 4 3 3 2 4 3 4 3
#> [12169] 2 2 3 5 1 5 5 5 4 2 1 1 5 5 2 3 1 3 5 1 4 2 2 2 1 5 4 1 3 2 2 4 3 2 2 2
#> [12205] 5 2 5 3 3 2 3 3 3 1 2 3 3 1 5 4 2 5 5 4 2 2 4 1 4 4 3 2 3 2 4 5 5 1 3 2
#> [12241] 5 5 4 2 2 2 5 3 2 2 5 1 1 5 2 5 2 1 2 3 1 3 3 1 5 2 2 4 2 3 1 2 2 2 4 2
#> [12277] 2 5 2 5 2 3 1 1 5 3 4 3 5 2 5 2 3 2 2 2 2 5 2 4 3 1 2 2 4 2 2 5 4 3 4 2
#> [12313] 1 4 5 3 1 3 4 3 3 5 2 3 3 1 4 4 2 3 2 2 5 5 5 3 4 3 2 3 2 2 5 3 4 2 3 3
#> [12349] 4 2 5 3 3 2 5 3 1 3 2 5 1 5 5 1 2 3 2 2 3 2 2 1 2 1 3 3 2 4 2 2 3 1 3 5
#> [12385] 5 4 3 2 3 2 1 1 5 5 5 2 1 4 5 4 2 5 2 5 5 5 4 2 1 2 3 2 2 2 2 1 1 2 5 3
#> [12421] 5 2 5 3 1 2 3 5 2 2 2 1 3 2 3 3 4 2 2 3 2 1 1 2 5 5 3 5 3 2 5 2 4 4 5 5
#> [12457] 4 1 2 4 1 3 2 2 2 3 5 5 1 2 2 2 2 2 3 5 3 3 3 2 5 2 1 3 2 5 1 3 2 2 3 2
#> [12493] 3 2 2 2 4 2 3 5 4 4 5 3 2 4 5 2 1 2 5 5 3 2 2 2 3 4 2 2 3 3 3 5 2 3 2 2
#> [12529] 2 3 2 5 2 3 1 2 4 2 2 3 5 3 2 4 2 2 2 2 3 2 2 2 5 3 4 2 5 3 1 2 1 4 2 3
#> [12565] 4 2 3 4 5 4 3 3 2 3 2 4 5 1 5 4 2 1 2 1 3 5 3 4 3 5 4 1 2 1 2 1 2 2 4 2
#> [12601] 2 3 3 4 4 1 3 4 2 2 1 2 2 2 2 2 3 2 2 1 2 2 2 3 2 5 4 2 5 2 2 2 4 2 2 3
#> [12637] 2 5 1 4 2 2 3 5 1 2 2 2 1 1 5 5 3 3 2 2 5 3 2 1 3 3 2 2 5 2 1 3 2 5 2 5
#> [12673] 1 5 2 2 2 4 3 5 4 2 1 4 1 2 4 3 4 1 3 2 1 3 5 1 2 3 5 2 2 2 2 3 3 4 5 1
#> [12709] 1 5 3 2 2 3 3 5 2 3 5 2 3 1 3 3 2 5 2 5 1 5 3 2 2 1 5 2 2 5 5 2 2 4 4 2
#> [12745] 1 3 2 4 2 2 4 2 5 3 5 4 5 2 5 5 4 3 5 4 2 1 4 2 3 5 2 1 5 4 3 2 2 5 5 5
#> [12781] 2 1 5 2 2 3 2 5 2 5 3 2 5 2 1 3 3 2 2 2 1 3 2 4 2 5 2 1 4 5 5 3 3 5 4 3
#> [12817] 4 5 1 1 3 1 2 3 3 1 5 1 3 3 2 2 2 2 4 4 1 4 2 3 2 2 1 2 3 4 3 5 1 2 5 1
#> [12853] 1 1 3 5 2 4 5 1 2 2 5 2 1 1 1 2 3 5 1 2 3 5 1 5 4 4 2 1 3 2 1 5 2 2 2 4
#> [12889] 2 3 2 3 1 2 2 3 3 3 2 3 3 3 3 2 5 3 5 2 1 2 2 2 2 2 4 3 4 2 2 2 2 3 2 2
#> [12925] 3 2 5 3 2 2 5 3 2 5 3 2 2 4 5 5 2 5 1 4 2 1 2 1 3 2 2 3 2 2 2 4 2 2 3 5
#> [12961] 5 3 3 3 1 5 5 2 4 3 1 2 2 1 2 2 3 2 3 2 5 2 2 2 2 5 5 2 3 5 4 3 2 2 5 1
#> [12997] 3 5 2 1 3 3 1 3 2 2 2 2 2 5 2 3 5 3 5 2 2 5 1 5 3 3 2 5 2 2 3 2 2 2 4 2
#> [13033] 2 2 2 2 3 5 5 4 2 2 3 2 5 4 2 2 3 2 3 3 4 2 1 1 2 2 2 2 2 2 2 2 5 1 3 5
#> [13069] 1 3 1 3 5 1 2 2 3 2 5 2 4 1 3 2 3 4 2 3 5 2 1 4 1 2 4 2 2 5 2 2 2 1 2 5
#> [13105] 3 3 5 2 3 3 3 2 2 1 5 1 3 1 2 4 2 2 4 4 2 5 2 1 5 2 5 5 2 3 2 5 1 5 2 2
#> [13141] 5 1 3 5 5 5 4 2 1 2 4 4 5 2 2 3 5 5 2 5 5 5 1 3 4 4 1 2 2 2 5 2 3 2 5 3
#> [13177] 2 1 5 4 5 3 5 4 5 2 4 2 2 2 2 2 2 1 1 3 3 2 1 1 3 2 2 3 1 3 1 4 3 5 2 5
#> [13213] 2 5 2 1 5 3 5 4 3 2 3 5 2 3 2 1 3 2 4 2 4 4 4 1 4 2 3 2 1 4 5 3 5 2 1 3
#> [13249] 4 3 5 2 4 2 3 1 2 5 3 5 5 3 4 5 2 2 2 3 3 1 4 1 2 5 1 2 2 5 5 2 2 4 5 2
#> [13285] 4 3 5 1 1 1 1 2 2 1 2 5 5 4 2 1 2 2 5 2 4 5 5 2 2 2 5 3 3 3 1 3 3 1 1 2
#> [13321] 3 4 2 5 2 2 2 4 2 1 3 1 5 5 2 5 2 5 3 2 2 2 5 2 5 5 3 4 1 5 1 3 2 2 4 5
#> [13357] 2 3 1 1 5 2 4 5 5 3 5 5 4 2 4 4 4 4 2 3 1 2 2 4 3 2 2 2 2 2 5 2 5 5 3 5
#> [13393] 2 2 2 5 1 1 2 4 5 2 3 4 3 3 5 5 4 5 3 5 2 2 1 3 2 2 1 3 5 5 3 4 2 3 1 1
#> [13429] 2 2 2 4 5 2 5 2 2 2 2 3 2 4 2 2 2 1 1 4 2 2 3 2 1 2 1 4 3 5 3 5 3 2 5 3
#> [13465] 3 2 3 2 2 2 2 5 2 2 3 4 2 2 4 1 2 2 3 2 2 2 2 2 3 3 3 2 4 3 2 3 2 2 5 3
#> [13501] 2 5 2 5 2 2 4 5 5 5 2 2 2 4 2 2 5 3 2 4 3 2 2 2 4 4 3 5 2 2 3 3 1 3 2 2
#> [13537] 5 3 2 1 2 2 2 5 3 4 5 5 1 1 2 2 5 2 2 2 5 2 1 5 2 1 2 3 1 3 4 2 1 2 1 2
#> [13573] 5 4 2 1 2 5 3 2 5 4 2 3 2 4 2 2 3 3 2 2 2 5 5 3 3 5 3 2 2 3 5 2 3 1 5 5
#> [13609] 2 3 2 2 2 2 3 3 4 1 1 2 3 1 3 2 2 3 2 2 2 3 3 3 3 3 2 1 2 2 2 3 3 2 2 4
#> [13645] 5 2 5 2 2 3 5 5 1 1 4 3 2 4 2 2 2 2 2 5 3 2 5 2 1 5 2 2 2 2 1 2 2 2 2 4
#> [13681] 3 3 4 2 3 1 2 3 2 3 5 2 3 5 1 4 2 2 4 2 5 2 3 3 5 2 4 2 4 4 2 3 2 1 1 5
#> [13717] 3 2 2 1 3 4 3 4 3 2 2 5 3 2 2 3 2 4 2 2 2 3 3 4 2 2 3 3 5 1 1 2 2 4 4 5
#> [13753] 2 5 3 2 2 2 3 5 1 3 2 2 5 4 3 2 1 5 5 3 2 2 4 2 3 1 1 5 1 2 2 5 4 1 5 3
#> [13789] 2 2 2 3 2 3 2 1 1 2 2 2 2 2 5 5 2 2 2 3 1 5 3 5 3 2 2 2 4 3 1 2 2 1 1 2
#> [13825] 1 2 3 3 2 2 5 3 2 4 2 5 3 5 3 5 4 4 2 5 4 2 1 3 5 3 2 3 3 5 2 4 2 5 2 1
#> [13861] 2 1 2 1 3 1 4 3 3 5 2 3 2 2 4 5 2 2 1 3 3 2 4 5 2 2 3 5 4 2 3 2 2 2 2 5
#> [13897] 1 5 1 2 5 4 2 3 3 2 5 4 3 2 2 1 1 1 2 1 4 5 2 2 5 1 2 5 2 2 3 4 3 2 3 2
#> [13933] 3 3 1 2 2 3 1 5 5 3 5 3 2 2 3 3 1 2 2 2 2 2 2 2 3 4 1 3 5 2 1 5 3 3 3 2
#> [13969] 2 1 2 2 2 2 4 3 2 2 4 5 3 1 3 2 1 3 2 2 2 2 1 5 3 2 3 2 1 5 1 5 4 4 4 4
#> [14005] 2 4 2 4 5 2 5 4 1 3 2 4 1 5 3 2 1 2 2 5 4 4 3 3 4 5 2 3 3 2 2 1 3 1 2 3
#> [14041] 2 1 2 1 1 2 3 5 5 2 3 1 3 1 4 3 5 5 3 2 2 4 5 2 1 1 2 2 3 3 2 2 3 2 2 2
#> [14077] 2 3 2 2 5 5 5 5 4 2 3 3 2 5 2 2 4 1 2 2 1 2 2 1 3 2 3 3 4 2 2 2 3 4 5 3
#> [14113] 4 2 2 2 3 2 1 3 2 3 3 3 2 2 2 5 5 3 4 3 1 2 2 5 2 1 5 2 1 3 2 2 5 5 5 1
#> [14149] 3 5 5 1 2 2 2 5 4 3 2 1 2 2 1 3 1 2 2 5 4 3 2 3 1 2 3 4 5 1 2 2 2 4 2 2
#> [14185] 1 2 2 5 4 4 1 5 4 3 1 2 2 3 3 1 2 1 2 2 5 2 4 2 1 1 5 5 5 5 4 1 1 3 2 2
#> [14221] 4 2 1 2 3 2 2 3 3 2 2 5 3 1 2 3 1 1 1 5 3 2 4 2 5 5 2 2 2 5 3 3 5 2 3 3
#> [14257] 4 2 5 1 5 2 2 2 5 2 1 5 2 2 1 5 2 5 5 2 2 4 1 2 2 1 2 1 1 5 3 1 3 1 2 2
#> [14293] 2 3 3 1 2 1 2 1 2 2 1 2 5 2 1 1 4 3 4 5 1 5 5 5 2 2 2 1 2 2 2 2 2 3 3 3
#> [14329] 2 5 2 2 2 2 2 1 2 2 2 1 2 3 4 2 1 3 2 1 5 2 5 1 2 3 3 2 5 2 1 2 5 5 3 3
#> [14365] 2 1 1 5 3 3 2 5 2 4 5 4 5 2 5 1 2 1 3 5 2 1 4 2 1 2 5 2 4 5 2 5 2 1 3 2
#> [14401] 4 2 1 5 2 5 3 2 4 2 2 2 3 2 4 5 3 3 4 3 1 1 3 3 4 2 5 3 3 2 2 2 4 2 4 2
#> [14437] 4 5 2 2 1 3 3 2 2 1 2 2 4 4 5 2 3 2 2 2 1 2 4 5 1 3 2 2 2 2 2 1 2 2 4 2
#> [14473] 2 3 2 2 1 5 2 2 2 2 2 1 2 2 3 2 1 2 2 3 4 2 3 4 5 2 1 3 4 2 5 2 5 3 2 1
#> [14509] 1 2 1 5 3 4 4 2 1 2 2 3 2 2 4 2 1 2 2 2 3 1 5 5 3 3 1 5 2 2 2 1 1 3 3 1
#> [14545] 2 4 1 3 2 3 2 5 2 3 2 2 2 3 1 2 2 2 3 4 2 1 2 2 2 5 1 3 2 2 2 2 3 2 2 2
#> [14581] 5 3 3 5 2 2 1 2 3 2 3 3 5 2 3 5 3 4 2 3 3 4 4 1 2 1 4 3 2 3 2 5 2 5 5 4
#> [14617] 4 1 3 5 2 5 5 3 3 2 2 3 2 2 2 3 3 2 2 2 5 1 2 5 4 5 2 5 5 2 4 2 4 3 2 5
#> [14653] 2 3 5 3 2 2 1 3 1 3 3 4 3 3 5 1 3 1 2 1 3 2 2 1 4 1 2 2 3 2 5 5 1 5 2 1
#> [14689] 3 4 3 2 4 2 3 3 3 1 2 1 2 5 5 5 3 1 5 3 3 3 4 2 1 3 5 2 2 1 3 3 2 5 2 5
#> [14725] 5 5 5 5 5 3 1 5 4 2 1 3 2 2 2 2 2 2 1 5 2 4 2 3 5 2 3 2 2 3 2 2 3 2 4 2
#> [14761] 4 3 3 3 3 2 3 2 2 4 3 2 1 5 5 2 1 1 2 2 2 5 5 3 4 2 2 2 2 3 4 4 5 2 5 2
#> [14797] 2 4 2 1 4 3 4 2 2 4 4 3 5 4 2 3 1 5 2 2 2 2 2 5 2 3 4 2 1 5 1 3 1 5 2 2
#> [14833] 2 2 2 2 4 1 2 1 2 3 2 2 3 3 1 5 1 5 2 2 1 4 3 1 3 3 5 3 1 2 1 3 2 2 3 2
#> [14869] 2 3 3 2 5 2 5 2 5 4 2 3 3 3 5 1 4 2 1 2 2 3 3 3 2 2 2 1 4 2 3 2 1 3 2 4
#> [14905] 3 4 2 5 2 5 5 5 1 5 5 3 5 2 5 4 3 3 2 4 5 2 2 5 3 2 3 5 2 1 5 1 3 2 5 2
#> [14941] 3 1 3 1 2 2 2 2 2 3 5 5 4 2 4 2 4 3 5 2 2 2 3 3 2 1 2 2 2 2 5 1 4 2 1 2
#> [14977] 2 1 4 2 5 4 3 4 2 4 2 5 2 2 1 2 4 4 2 4 2 2 1 2 2 4 2 2 4 2 3 3 1 2 2 2
#> [15013] 2 1 1 3 3 3 2 2 5 2 5 3 3 2 2 3 2 2 2 4 3 1 5 2 2 1 5 3 5 3 3 2 2 4 4 4
#> [15049] 1 2 5 2 3 2 1 4 4 2 5 3 2 2 1 2 4 2 3 1 4 2 3 3 4 4 1 2 3 1 2 3 2 2 3 5
#> [15085] 4 5 4 5 1 1 1 2 2 1 5 4 5 1 2 2 1 2 2 3 4 2 3 2 1 2 3 3 3 2 2 3 5 3 3 4
#> [15121] 1 2 4 2 5 1 2 3 2 1 2 3 1 5 3 2 2 3 3 3 3 1 2 2 2 1 2 3 2 2 2 2 1 4 5 2
#> [15157] 3 1 3 1 3 3 5 5 2 1 1 3 2 2 2 1 3 2 1 3 3 3 1 1 2 3 3 4 2 4 3 1 2 5 2 2
#> [15193] 2 5 2 2 3 2 5 4 2 2 3 2 3 2 2 4 2 5 1 2 2 1 4 2 5 2 2 5 2 1 3 2 5 2 2 5
#> [15229] 3 5 3 1 1 3 4 3 4 2 5 4 2 2 1 2 2 2 2 2 1 4 2 5 5 3 3 2 3 1 3 2 4 1 3 2
#> [15265] 1 2 2 5 2 1 3 3 2 5 2 1 3 2 1 2 2 3 2 3 2 2 3 4 2 4 5 4 3 4 2 2 4 5 4 3
#> [15301] 5 2 1 3 2 3 3 5 3 1 3 2 3 2 1 5 5 2 3 3 1 1 2 3 2 2 2 2 3 2 2 4 1 4 2 2
#> [15337] 2 3 2 3 4 1 1 1 4 2 1 2 2 1 1 4 2 2 5 3 2 4 5 3 3 1 3 2 5 4 1 2 5 4 2 5
#> [15373] 2 3 4 2 2 1 3 1 2 2 5 1 3 3 2 2 2 1 5 5 1 2 5 2 2 2 3 1 2 1 3 4 2 5 3 2
#> [15409] 1 3 1 3 2 2 1 4 2 4 2 5 3 3 5 2 3 2 3 5 2 3 5 3 2 2 3 3 5 2 1 3 4 5 2 2
#> [15445] 2 1 2 2 2 4 1 4 4 3 5 5 2 1 3 2 2 2 4 1 2 2 1 1 5 2 2 1 5 2 5 2 4 3 2 1
#> [15481] 2 2 1 2 1 5 4 5 4 2 5 1 1 3 4 5 4 4 2 5 2 3 2 2 1 3 2 2 1 3 2 2 3 1 5 5
#> [15517] 2 2 2 3 3 2 3 5 2 1 2 2 5 5 5 2 2 2 5 5 2 2 3 2 3 4 3 2 4 5 2 5 5 2 1 2
#> [15553] 2 5 3 5 2 5 2 1 1 4 2 2 2 2 2 3 2 2 2 2 2 2 2 3 2 3 3 3 2 3 3 2 5 3 2 3
#> [15589] 2 5 2 3 2 1 3 3 5 5 5 4 2 2 3 5 3 2 4 1 5 3 2 5 1 2 2 4 3 2 1 5 2 2 5 3
#> [15625] 1 2 2 2 2 1 2 2 3 2 4 3 2 3 2 2 2 3 3 5 2 1 3 3 4 2 3 5 2 3 2 3 3 4 5 2
#> [15661] 2 2 5 1 2 3 4 2 5 4 5 5 2 2 5 3 1 2 2 5 1 1 4 4 5 2 2 5 2 3 1 5 5 1 2 1
#> [15697] 3 1 5 2 2 3 2 1 2 2 2 5 3 2 2 2 4 3 2 4 3 3 4 1 2 2 4 3 3 2 5 5 4 2 2 1
#> [15733] 2 3 1 2 3 4 5 2 1 1 4 3 5 4 5 5 3 2 5 2 5 2 1 3 1 2 2 3 2 2 5 2 2 3 1 4
#> [15769] 3 5 3 2 2 2 3 3 2 3 3 3 3 3 5 2 3 5 5 4 5 5 2 4 5 2 3 2 2 5 2 4 2 2 1 4
#> [15805] 1 3 3 2 5 3 5 4 1 4 3 3 3 2 3 2 2 3 1 2 2 1 5 2 2 1 2 4 5 3 3 3 5 2 5 2
#> [15841] 3 3 4 1 5 3 2 4 3 2 1 4 5 3 2 2 2 4 2 2 5 3 2 1 2 5 1 3 5 2 5 3 2 2 3 3
#> [15877] 2 5 4 3 4 1 5 2 3 2 4 2 4 2 3 2 1 4 3 2 3 1 4 1 5 2 2 4 3 4 3 2 2 2 4 2
#> [15913] 2 2 2 5 4 2 3 1 2 3 1 1 2 3 2 4 2 1 1 3 5 5 2 4 2 5 5 5 1 2 2 3 3 2 3 1
#> [15949] 1 1 5 1 1 2 4 2 2 2 2 5 2 2 2 3 2 3 1 1 2 2 1 2 2 3 3 3 3 5 3 2 3 5 5 5
#> [15985] 4 1 3 5 5 5 3 2 2 2 1 5 3 3 5 4 3 2 4 1 1 3 5 4 5 2 4 1 2 1 2 2 4 2 5 4
#> [16021] 2 4 2 2 2 2 1 2 1 3 1 2 5 5 2 3 2 2 1 2 3 5 3 2 3 2 2 2 5 3 3 2 2 1 2 2
#> [16057] 2 5 2 2 1 5 5 2 3 3 2 1 2 1 4 4 5 2 3 4 2 2 2 4 2 3 1 3 4 5 2 5 3 2 1 1
#> [16093] 2 4 3 5 2 3 2 3 2 3 5 5 2 2 1 1 2 1 5 2 1 2 2 5 3 2 5 2 5 2 1 5 2 3 5 1
#> [16129] 3 2 2 2 4 4 4 2 2 2 5 3 5 3 2 5 2 5 1 2 2 3 3 2 3 2 2 1 3 4 4 5 5 4 4 5
#> [16165] 5 2 1 1 2 1 1 2 3 5 4 3 2 2 5 1 2 2 4 5 4 3 2 1 2 3 2 2 5 3 5 2 5 5 2 2
#> [16201] 1 3 2 2 3 2 1 5 2 5 3 2 1 3 3 2 2 2 2 3 2 2 5 5 3 3 2 2 2 2 1 2 1 2 3 1
#> [16237] 2 2 3 1 2 1 3 3 2 3 1 3 2 2 5 2 2 4 3 1 3 2 2 2 2 4 3 2 3 2 2 4 2 2 1 1
#> [16273] 3 3 4 5 2 5 1 4 3 2 3 1 2 3 2 2 2 3 1 5 2 3 4 3 3 1 5 2 1 5 3 2 1 1 5 2
#> [16309] 2 5 2 2 3 3 5 2 5 1 3 1 2 1 5 1 1 5 2 1 2 2 2 2 3 3 2 2 3 2 4 1 5 2 5 2
#> [16345] 2 2 5 4 2 3 3 2 5 1 2 3 4 2 3 2 2 2 2 3 3 1 2 5 2 2 1 5 2 3 3 2 2 2 3 4
#> [16381] 2 1 2 1 2 5 1 5 2 3 2 3 2 1 3 3 4 1 3 4 1 4 1 2 2 2 2 3 1 5 2 3 4 2 3 2
#> [16417] 3 4 2 3 2 2 3 5 5 2 1 2 2 3 1 2 2 2 5 1 5 5 4 5 5 2 3 2 5 1 1 1 3 5 3 1
#> [16453] 2 5 1 2 3 2 3 4 3 4 5 3 5 3 2 2 3 3 5 5 1 2 2 4 2 5 2 4 1 2 5 3 4 1 1 4
#> [16489] 3 4 2 1 2 3 2 2 1 5 2 2 2 5 3 3 4 3 2 5 3 3 5 5 5 2 1 2 5 4 2 2 5 2 2 2
#> [16525] 2 2 3 5 5 3 1 3 1 4 1 5 2 5 4 3 1 4 4 5 4 2 5 5 4 3 3 3 2 3 2 3 4 3 5 2
#> [16561] 3 3 2 2 5 3 3 2 2 3 3 2 1 4 4 1 5 3 5 2 1 2 2 1 1 2 2 1 2 4 3 4 2 3 2 2
#> [16597] 3 3 2 2 1 1 1 1 5 5 5 4 2 2 2 5 2 5 2 3 2 5 2 2 3 4 4 1 2 2 5 5 3 2 3 2
#> [16633] 2 4 2 3 2 2 2 2 2 5 2 3 1 2 2 4 2 2 4 3 2 1 3 5 2 2 3 4 1 2 5 2 2 4 4 2
#> [16669] 3 1 4 2 5 1 1 3 1 3 2 1 5 2 2 3 2 4 4 3 2 2 2 2 2 3 3 2 5 3 3 2 3 3 1 4
#> [16705] 2 5 1 1 4 2 1 2 2 3 2 2 1 3 2 2 1 3 3 3 5 4 1 3 2 5 2 3 4 2 2 2 2 2 4 1
#> [16741] 3 2 3 2 2 2 2 2 5 3 2 3 5 4 1 3 4 2 5 5 4 5 4 4 3 4 2 3 2 2 1 2 3 3 1 5
#> [16777] 2 5 5 3 3 5 3 5 3 2 2 2 5 4 1 4 1 1 2 3 2 3 5 5 2 2 2 2 1 2 2 3 1 1 2 2
#> [16813] 4 3 2 4 2 4 3 2 3 2 4 3 1 2 1 1 2 2 5 3 2 1 2 3 5 2 2 1 1 4 2 3 2 3 1 2
#> [16849] 2 1 2 2 3 1 1 2 1 5 2 2 2 4 2 3 3 2 3 2 5 3 1 1 3 5 1 3 4 2 3 4 2 5 1 2
#> [16885] 3 2 1 3 3 5 2 4 1 2 1 4 3 2 2 1 2 5 2 2 2 3 3 2 1 5 1 1 5 2 2 1 4 2 2 2
#> [16921] 1 2 3 2 1 4 5 1 1 2 2 2 2 3 2 3 4 3 5 2 2 2 2 3 2 1 2 5 3 3 2 4 3 1 3 3
#> [16957] 3 2 3 2 1 1 2 2 5 2 2 2 3 5 3 2 2 3 2 3 3 5 1 1 2 4 2 1 3 2 2 2 4 4 2 2
#> [16993] 2 5 4 1 3 5 2 5 2 2 3 2 5 1 2 2 5 2 2 2 3 1 2 2 2 1 1 2 2 4 3 4 1 2 2 1
#> [17029] 3 3 2 1 1 3 1 4 2 2 1 5 2 2 4 5 2 1 3 2 4 2 2 3 5 2 1 5 4 2 2 2 2 3 2 5
#> [17065] 1 2 1 5 1 5 2 1 4 2 5 2 5 4 5 2 2 3 5 2 4 2 2 3 4 4 2 5 2 1 3 3 1 2 5 1
#> [17101] 2 2 2 3 4 1 2 5 2 2 1 5 1 1 5 3 1 2 3 2 1 4 2 3 4 5 2 3 2 2 3 4 4 2 5 1
#> [17137] 2 5 5 2 2 2 2 4 3 2 1 1 5 2 5 4 2 2 3 2 5 2 5 2 2 3 2 3 4 3 2 1 3 2 1 5
#> [17173] 2 1 1 1 1 5 2 3 3 2 4 5 2 2 2 1 1 5 1 1 5 2 3 2 2 2 2 3 1 3 2 1 1 4 1 4
#> [17209] 3 5 2 5 2 2 3 2 5 5 2 3 4 2 2 5 3 3 5 5 1 1 3 4 4 2 3 4 3 3 3 1 4 1 3 5
#> [17245] 5 4 1 2 2 5 4 3 2 4 5 4 2 1 2 2 1 2 3 2 2 3 5 4 2 1 5 4 3 2 3 5 2 2 5 2
#> [17281] 2 2 1 1 2 4 4 3 2 3 5 2 1 1 3 5 2 2 5 1 2 2 3 5 2 2 3 5 2 5 4 3 2 1 2 2
#> [17317] 5 2 2 4 3 4 3 2 5 2 5 3 5 2 1 2 4 5 2 3 1 3 2 2 2 3 5 2 3 3 1 2 5 2 3 1
#> [17353] 5 1 2 2 5 3 5 2 3 2 2 2 2 5 5 2 2 2 3 2 2 5 2 1 2 4 2 2 2 4 2 1 4 2 2 3
#> [17389] 5 2 2 3 5 4 4 3 5 5 2 2 4 1 2 2 1 5 2 2 1 3 2 1 2 2 2 5 2 5 1 2 2 2 2 2
#> [17425] 5 4 5 5 2 3 3 5 2 2 2 1 4 2 5 2 2 1 5 5 2 2 1 2 3 2 2 2 3 2 2 2 2 2 1 3
#> [17461] 3 3 3 1 4 2 3 4 2 3 2 5 4 3 2 3 1 2 3 5 2 2 5 2 2 4 4 2 5 2 3 2 1 3 1 2
#> [17497] 2 2 2 3 2 2 5 1 1 4 2 5 2 3 5 3 5 3 4 5 5 3 2 3 2 3 5 3 2 3 5 5 1 2 3 3
#> [17533] 2 3 2 5 4 2 5 1 2 4 1 5 3 4 3 1 3 2 5 2 1 2 4 1 3 2 5 5 5 3 1 2 3 3 3 3
#> [17569] 2 3 2 3 2 1 2 4 4 3 3 2 2 5 4 2 1 2 3 2 1 1 4 4 3 2 1 4 2 2 2 3 3 3 5 2
#> [17605] 4 3 2 2 2 1 4 5 3 3 3 4 2 1 4 4 2 3 5 1 3 2 2 3 5 5 1 1 2 4 3 1 2 2 2 3
#> [17641] 4 4 4 3 2 1 1 2 3 5 5 2 2 5 2 2 5 4 2 5 2 5 5 3 4 3 4 5 5 2 3 2 3 5 4 3
#> [17677] 3 2 1 5 2 2 3 5 5 3 4 5 3 1 5 2 5 2 2 4 3 3 3 3 3 3 5 2 5 2 2 5 5 4 2 2
#> [17713] 1 2 2 3 4 1 5 2 1 3 3 2 2 2 2 1 2 1 2 3 2 4 3 2 1 3 3 3 5 4 2 3 2 3 5 2
#> [17749] 1 5 2 3 2 3 3 1 2 2 4 2 4 2 2 3 2 3 3 1 3 5 4 5 2 2 4 4 3 5 5 2 2 3 4 3
#> [17785] 5 2 5 1 1 4 2 2 1 3 3 1 3 2 2 2 2 5 2 3 2 2 5 2 2 4 2 1 1 1 2 3 4 2 1 1
#> [17821] 4 3 2 3 1 2 2 2 2 2 1 5 2 3 5 4 3 2 4 5 1 1 5 1 2 2 2 4 3 2 1 3 5 3 3 4
#> [17857] 3 3 5 3 5 2 2 2 2 5 2 1 5 2 3 2 1 2 2 3 5 3 5 2 2 1 5 5 3 2 2 2 2 2 4 3
#> [17893] 3 3 4 2 2 5 3 2 3 2 2 3 3 5 4 4 4 1 1 3 2 3 2 3 1 4 4 5 5 3 2 1 5 1 1 3
#> [17929] 2 2 4 5 5 2 5 2 3 2 2 1 2 2 3 2 3 1 5 5 1 5 1 2 2 2 2 2 2 5 2 3 2 2 2 3
#> [17965] 2 2 5 3 4 3 3 4 2 4 1 2 5 1 2 2 5 4 5 1 5 2 1 3 3 2 3 4 4 3 3 1 4 3 2 3
#> [18001] 2 5 1 2 3 4 3 2 1 3 4 3 3 1 5 3 5 3 5 2 1 1 3 2 2 1 2 4 4 4 1 5 5 5 2 5
#> [18037] 1 5 2 2 2 5 4 1 3 2 2 1 4 2 2 2 1 2 5 1 2 2 4 3 1 5 4 2 1 4 2 5 3 1 3 3
#> [18073] 2 2 2 2 3 1 4 5 5 4 1 2 5 2 3 3 5 3 2 2 1 3 2 5 2 3 4 2 4 4 2 5 2 2 3 1
#> [18109] 5 5 3 2 2 5 2 3 2 2 4 3 2 2 5 1 5 1 5 2 2 4 2 1 5 5 3 2 3 1 1 5 2 2 3 3
#> [18145] 2 1 4 2 4 2 3 5 3 4 5 2 2 4 1 5 4 5 4 5 3 3 5 1 3 5 3 4 3 1 5 4 2 2 1 3
#> [18181] 1 3 2 5 3 3 2 5 5 2 2 1 2 2 2 3 3 3 5 2 5 3 2 2 2 5 2 1 5 5 3 1 5 3 2 4
#> [18217] 2 5 2 2 3 3 2 5 2 3 3 5 4 2 3 5 3 5 3 4 2 2 5 3 3 3 2 2 3 5 2 2 2 2 5 3
#> [18253] 1 3 2 2 3 3 1 3 2 2 2 4 5 2 4 3 4 2 4 2 1 2 3 5 2 5 3 3 2 2 2 5 3 5 2 4
#> [18289] 2 1 2 4 2 5 1 1 1 1 3 5 4 3 2 2 5 2 5 2 3 2 5 2 3 3 3 2 2 2 2 2 4 4 2 2
#> [18325] 2 1 2 3 5 5 3 5 2 1 5 2 2 2 2 2 2 3 1 4 2 4 5 2 2 1 4 1 2 3 3 3 2 2 2 2
#> [18361] 3 1 2 3 5 2 1 2 3 1 3 3 2 3 2 2 2 4 3 5 1 1 3 5 1 2 2 3 3 2 2 5 1 3 3 3
#> [18397] 3 3 1 1 2 2 4 3 2 3 1 3 2 3 2 2 2 5 2 2 2 2 1 2 5 5 2 2 1 3 2 2 2 5 4 2
#> [18433] 3 3 3 2 2 4 2 2 4 2 2 3 1 3 4 3 4 5 1 2 1 1 5 1 2 2 4 5 2 2 2 4 2 4 2 2
#> [18469] 2 1 4 1 5 3 3 5 1 4 2 3 5 1 5 2 4 2 4 3 5 2 3 3 2 3 5 2 3 2 2 1 2 2 1 2
#> [18505] 3 2 5 2 5 3 3 2 1 2 1 1 4 5 2 3 2 5 2 2 3 3 4 1 2 4 3 2 3 2 4 3 4 1 2 2
#> [18541] 2 3 2 3 2 5 2 2 5 4 1 3 2 2 2 1 3 3 2 5 3 5 2 2 4 2 5 3 1 3 4 1 2 2 1 2
#> [18577] 2 1 2 3 1 2 2 1 2 5 3 4 5 2 4 2 2 3 3 2 2 2 2 2 1 5 2 1 1 2 5 5 2 1 2 5
#> [18613] 2 3 5 1 3 2 3 3 1 2 2 2 5 2 1 1 5 3 1 2 5 2 2 4 3 3 4 2 3 3 3 1 2 2 5 2
#> [18649] 4 3 2 3 5 3 4 5 4 2 2 5 2 5 1 2 3 1 1 2 3 5 1 1 2 5 5 5 2 2 5 3 2 1 3 1
#> [18685] 1 3 1 3 2 1 5 2 1 2 2 5 3 3 2 2 2 4 3 4 4 3 3 3 2 5 5 1 4 3 1 2 2 2 3 1
#> [18721] 5 4 2 3 4 2 5 3 5 3 4 5 1 2 5 2 2 5 4 2 2 3 3 2 5 2 5 5 2 1 5 3 2 2 1 2
#> [18757] 2 1 2 2 1 1 3 4 4 1 2 2 4 5 5 5 3 2 2 5 2 2 2 2 2 4 4 4 2 3 4 4 1 4 2 3
#> [18793] 5 1 2 3 2 3 2 3 2 4 2 1 2 2 1 2 2 5 5 4 4 2 2 4 2 4 5 3 5 4 1 2 3 1 2 3
#> [18829] 1 2 2 4 1 2 2 4 1 1 5 5 5 3 4 3 3 3 2 3 2 2 3 3 2 4 2 3 5 3 4 2 3 5 5 3
#> [18865] 5 3 1 5 3 5 5 1 4 3 5 5 5 2 4 3 2 5 2 4 4 3 5 5 2 3 2 2 2 2 2 5 2 2 5 2
#> [18901] 5 4 1 4 4 5 4 1 4 2 2 2 3 2 4 5 3 2 2 2 2 3 4 2 5 4 3 1 2 5 4 5 5 5 2 5
#> [18937] 2 1 4 5 2 2 3 1 3 3 2 4 1 2 3 2 3 2 3 5 1 5 4 5 2 2 3 5 5 5 2 1 4 2 5 1
#> [18973] 3 1 4 3 3 3 5 2 1 5 4 1 3 3 4 2 5 2 3 5 1 3 3 2 2 3 2 3 5 3 2 2 2 1 4 5
#> [19009] 5 3 2 2 4 2 1 5 2 1 3 3 4 3 2 1 3 2 5 5 5 2 3 2 2 3 2 3 3 2 2 2 3 1 2 2
#> [19045] 4 5 2 2 3 2 5 5 3 4 5 2 2 2 1 2 2 3 4 4 3 5 5 5 2 5 2 3 3 1 3 5 1 2 5 3
#> [19081] 5 2 3 1 5 2 5 2 5 5 2 3 4 1 1 5 1 2 1 2 2 3 2 4 3 1 3 5 1 4 2 2 2 2 5 4
#> [19117] 3 1 2 4 1 2 4 5 5 5 3 2 2 5 2 5 1 2 2 4 5 2 3 5 2 2 5 3 1 2 5 2 5 3 4 3
#> [19153] 3 4 2 4 4 2 3 3 2 5 3 2 5 2 5 3 5 2 2 2 2 5 2 3 4 3 2 2 5 3 3 5 4 4 4 4
#> [19189] 3 5 2 3 4 5 3 2 2 3 1 4 2 2 5 5 2 3 2 5 5 2 3 3 2 5 2 5 2 2 5 5 2 2 2 5
#> [19225] 2 1 1 1 2 3 2 3 2 5 4 1 3 2 3 3 5 1 1 2 4 3 1 3 2 2 2 3 4 1 3 2 2 2 3 2
#> [19261] 5 2 1 5 2 5 3 2 2 1 1 2 2 5 4 2 4 5 1 4 5 2 2 2 1 1 2 3 3 1 2 2 5 5 5 2
#> [19297] 2 2 1 3 1 2 4 5 4 5 2 2 2 3 2 2 2 3 5 2 2 2 4 1 5 2 4 2 5 2 3 3 1 5 2 2
#> [19333] 4 1 3 3 3 4 3 3 3 5 5 2 3 2 1 1 2 5 1 5 5 5 2 2 1 1 2 4 4 2 4 2 3 1 1 1
#> [19369] 2 3 2 2 4 5 1 5 2 1 2 3 1 2 5 2 2 2 5 2 1 5 4 2 2 1 2 1 3 1 2 3 5 4 2 2
#> [19405] 2 2 3 1 5 3 1 4 1 4 4 1 3 2 2 2 2 2 5 5 2 2 2 3 3 2 1 2 2 3 2 2 1 5 2 3
#> [19441] 2 1 2 2 2 3 2 2 3 1 2 1 2 5 3 3 2 2 5 1 5 1 5 3 2 1 2 4 3 5 3 2 1 1 2 2
#> [19477] 1 1 2 3 2 4 2 5 5 5 2 3 2 5 1 2 3 4 3 2 2 1 5 2 3 4 5 3 3 4 1 3 3 3 2 2
#> [19513] 3 4 3 3 3 2 3 2 1 2 2 2 2 5 4 4 5 2 5 2 2 3 2 2 3 4 2 3 3 2 2 5 4 1 1 4
#> [19549] 1 4 2 2 2 4 2 4 2 5 5 5 4 1 3 4 1 1 5 4 2 5 2 2 1 2 5 3 2 2 3 5 2 4 3 3
#> [19585] 1 2 1 2 3 3 2 2 3 5 3 3 2 1 2 4 3 4 2 2 2 2 2 2 2 2 2 3 5 3 2 3 2 2 2 5
#> [19621] 2 2 5 5 2 2 3 2 3 3 3 2 2 1 1 3 3 3 3 5 1 2 2 5 2 1 1 3 3 5 2 3 2 4 2 4
#> [19657] 2 2 3 1 3 1 3 5 2 3 1 1 3 2 2 4 2 5 2 2 2 4 3 3 2 2 2 2 5 2 2 2 2 1 4 3
#> [19693] 2 3 2 3 4 2 2 2 3 2 5 2 3 3 2 5 3 2 2 5 1 2 2 1 2 3 1 1 1 1 2 3 2 5 2 3
#> [19729] 1 5 2 3 4 1 3 1 4 1 5 5 2 2 4 2 2 2 3 2 3 5 3 4 5 3 2 3 1 4 5 1 2 2 2 3
#> [19765] 4 1 2 3 1 5 4 3 1 1 3 2 2 2 2 4 3 2 4 4 4 1 2 2 1 2 2 1 2 3 3 1 4 3 3 5
#> [19801] 1 3 2 2 3 2 2 5 5 2 3 3 2 5 4 2 2 1 3 3 5 3 2 5 5 1 3 2 3 2 5 2 2 4 3 2
#> [19837] 5 3 2 2 1 2 5 2 2 5 1 2 2 2 5 3 5 3 4 5 5 2 3 5 2 3 3 2 3 2 2 2 2 2 3 4
#> [19873] 5 1 4 4 1 3 2 2 2 4 2 1 2 3 2 4 2 2 4 5 2 1 3 3 5 3 3 2 5 1 5 3 3 3 3 2
#> [19909] 2 2 1 3 1 5 5 5 2 5 1 3 4 2 2 4 4 5 5 2 2 2 4 2 5 3 5 2 2 1 2 4 5 3 2 3
#> [19945] 2 3 4 2 3 1 1 2 1 3 2 1 3 1 1 2 2 2 3 1 5 3 2 3 5 2 3 5 2 5 2 2 1 5 3 2
#> [19981] 4 5 2 4 1 2 1 2 3 5 4 1 2 2 4 5 1 2 3 2 1 2 5 4 4 3 3 2 5 3 2 2 5 1 4 5
#> [20017] 1 1 3 2 3 5 3 5 2 5 2 2 3 3 2 2 1 3 5 1 5 2 4 4 3 4 2 2 2 5 2 2 4 3 2 2
#> [20053] 4 4 5 2 3 2 2 2 4 4 5 1 1 4 2 3 2 5 5 2 2 1 2 2 2 3 2 4 5 2 5 3 3 2 1 4
#> [20089] 5 1 2 4 3 2 3 2 1 2 4 2 4 1 1 1 4 1 3 5 2 2 5 5 1 2 1 3 2 2 1 2 2 3 4 3
#> [20125] 4 3 5 3 2 2 2 3 3 5 3 4 4 3 5 5 3 3 2 2 2 5 5 4 2 2 3 2 2 2 5 5 2 1 2 3
#> [20161] 4 2 5 3 5 5 3 2 2 2 2 4 2 3 3 2 2 2 2 4 3 5 2 2 3 2 2 5 2 1 3 2 2 3 3 4
#> [20197] 2 5 4 5 4 5 4 2 2 2 2 2 5 3 5 2 2 4 5 2 3 5 3 3 1 5 3 1 1 5 5 4 2 2 1 2
#> [20233] 2 3 4 5 3 2 4 2 2 2 3 2 5 4 2 2 4 5 5 4 2 1 3 5 3 4 2 3 4 2 3 4 2 2 2 2
#> [20269] 2 2 3 5 5 3 3 2 4 1 2 2 1 1 4 5 1 2 4 3 5 1 2 2 2 3 5 2 1 1 3 5 2 4 2 2
#> [20305] 2 2 5 3 5 1 1 5 2 4 1 4 3 5 4 5 2 2 2 2 2 1 2 5 3 2 2 4 3 2 1 3 2 2 4 2
#> [20341] 2 3 2 2 4 2 2 4 2 1 4 2 2 2 5 5 2 3 5 3 2 5 2 3 2 3 2 2 4 4 3 4 3 1 3 5
#> [20377] 2 2 2 4 2 4 2 2 5 2 2 5 2 3 4 5 3 4 5 5 1 5 2 1 2 2 1 2 2 1 1 2 3 3 5 2
#> [20413] 3 2 4 3 2 5 1 2 1 1 4 1 2 2 5 3 4 2 4 5 2 2 4 5 2 5 1 2 3 4 2 2 5 1 2 5
#> [20449] 5 2 1 4 1 5 2 4 4 3 4 2 5 4 3 4 2 1 1 2 1 2 1 3 3 1 2 2 2 1 4 5 3 1 1 2
#> [20485] 1 3 2 5 2 3 5 3 1 2 3 5 2 3 5 5 1 1 3 4 2 4 3 1 2 2 2 2 2 2 4 2 5 2 5 2
#> [20521] 2 2 2 3 5 3 2 4 4 1 1 3 4 1 3 3 4 4 3 2 2 5 4 2 3 3 1 5 5 5 1 3 2 5 5 5
#> [20557] 2 2 4 5 2 3 3 5 3 2 4 2 1 3 5 5 3 4 1 5 1 2 5 1 2 5 4 2 5 3 1 2 4 2 4 1
#> [20593] 3 1 1 5 1 3 2 1 3 2 5 2 4 1 2 5 1 3 3 3 2 1 5 2 4 1 1 5 3 5 4 5 3 2 1 2
#> [20629] 1 5 2 5 2 3 1 2 4 2 1 3 1 2 2 2 2 4 1 3 2 4 2 3 3 2 3 4 1 4 2 3 1 1 2 2
#> [20665] 1 2 5 5 4 1 2 2 2 1 4 2 4 1 2 4 2 5 1 2 1 2 2 2 4 2 2 1 5 4 3 2 1 3 4 2
#> [20701] 2 2 5 3 5 2 2 5 2 2 2 2 3 2 2 5 3 2 1 5 3 3 3 3 2 3 2 3 4 3 2 1 5 4 3 2
#> [20737] 3 1 3 2 2 4 2 3 2 2 5 5 4 3 1 3 5 5 2 2 3 5 2 2 2 2 3 1 5 2 3 5 2 1 1 5
#> [20773] 2 2 2 3 1 3 5 4 4 5 3 3 1 2 1 5 2 1 4 1 2 2 1 5 4 2 5 5 3 3 5 2 1 4 5 3
#> [20809] 3 1 1 4 3 2 2 5 5 2 5 3 4 2 4 2 2 4 2 5 3 4 2 3 1 5 1 3 5 2 4 2 2 5 4 5
#> [20845] 2 1 1 1 4 5 2 3 3 2 5 3 5 3 5 2 5 2 3 2 2 4 2 2 2 2 2 2 3 5 2 5 4 5 2 1
#> [20881] 2 2 2 2 2 2 5 3 3 3 1 2 1 2 1 5 2 4 3 4 2 2 3 5 2 1 4 4 1 2 3 2 4 5 3 2
#> [20917] 2 4 3 4 2 2 2 3 3 4 5 5 1 2 5 4 5 5 2 1 3 2 3 2 1 5 1 2 3 1 2 3 3 4 1 2
#> [20953] 2 2 1 2 4 2 5 3 5 3 2 2 1 1 2 1 3 3 2 5 1 4 5 5 3 3 3 5 5 4 3 2 2 2 5 1
#> [20989] 2 2 5 2 2 5 2 5 3 2 3 2 3 1 2 3 3 2 2 2 5 4 5 5 2 3 2 3 1 4 1 2 4 4 3 3
#> [21025] 1 2 5 3 2 2 4 5 3 1 1 2 1 5 1 2 2 4 1 2 5 1 2 4 1 4 5 2 1 2 2 2 2 1 1 5
#> [21061] 1 2 4 1 3 2 4 3 2 2 3 3 3 4 3 1 3 2 2 3 3 1 2 5 1 2 2 2 4 5 1 1 4 4 1 4
#> [21097] 1 2 3 1 3 1 5 5 4 1 3 4 2 2 2 4 4 2 2 3 2 3 2 4 1 1 5 2 2 4 2 3 2 5 1 3
#> [21133] 1 2 2 5 3 2 2 2 3 2 1 4 3 3 4 3 4 1 2 3 1 3 5 1 1 1 3 4 3 1 3 1 2 4 4 2
#> [21169] 2 2 5 3 2 2 2 4 5 5 2 2 5 2 3 2 4 2 2 1 2 2 3 2 2 2 2 2 2 5 5 2 4 2 1 5
#> [21205] 2 2 4 4 5 5 2 5 1 1 3 2 1 2 1 3 2 3 3 4 3 4 5 2 2 3 2 3 5 2 4 2 3 2 2 5
#> [21241] 2 2 4 1 2 1 3 2 3 2 4 3 4 3 2 1 1 2 4 4 4 1 4 3 1 3 3 2 1 5 3 5 2 3 2 5
#> [21277] 4 3 3 5 1 2 3 3 5 2 5 2 2 2 3 3 1 1 3 1 5 5 1 2 2 5 2 3 3 2 3 2 5 4 5 5
#> [21313] 2 2 3 4 1 2 5 4 2 3 4 3 2 4 5 2 2 3 1 3 2 2 3 5 2 3 3 2 2 5 4 3 4 3 3 2
#> [21349] 2 2 1 2 4 3 2 2 2 2 4 5 3 1 1 2 3 5 2 2 2 4 2 2 5 3 3 2 2 2 3 2 5 2 2 4
#> [21385] 2 5 4 1 2 2 2 1 2 4 4 5 2 1 2 4 2 3 1 2 1 4 3 5 5 3 4 2 4 2 3 2 2 2 5 2
#> [21421] 2 4 2 3 5 3 2 2 2 2 4 3 2 3 2 2 5 2 3 2 1 2 2 3 2 2 2 5 2 2 2 2 4 5 4 3
#> [21457] 1 4 2 1 5 2 3 4 5 2 1 1 2 3 1 5 3 4 4 4 3 1 4 1 3 4 1 1 2 5 5 2 4 1 4 4
#> [21493] 1 1 2 4 4 5 3 5 2 1 2 2 2 2 4 2 2 3 3 5 1 5 5 3 3 2 3 2 5 2 1 4 5 1 2 3
#> [21529] 1 1 5 3 1 3 1 4 5 5 4 4 4 2 3 2 4 4 2 2 2 2 5 3 3 1 1 2 2 5 2 5 5 3 2 4
#> [21565] 5 2 5 2 5 2 5 5 3 5 4 4 3 1 3 2 1 4 2 3 2 4 4 1 4 2 2 3 2 2 2 1 2 2 5 5
#> [21601] 3 2 4 3 4 3 1 3 2 2 5 3 1 2 5 3 2 2 5 2 2 4 2 2 3 5 4 3 1 3 2 4 5 5 3 3
#> [21637] 3 3 2 2 2 4 2 1 2 3 2 3 1 4 3 2 2 2 2 3 3 2 3 1 3 3 3 3 2 2 5 2 3 3 3 4
#> [21673] 2 3 1 5 3 5 2 3 1 2 5 4 2 2 2 2 2 4 4 2 2 1 1 3 1 2 3 3 2 5 5 5 1 2 5 2
#> [21709] 1 2 4 5 3 2 3 2 3 2 2 2 5 3 1 1 2 1 2 3 3 1 5 1 4 2 2 4 2 2 4 2 2 2 2 2
#> [21745] 3 5 3 1 3 2 2 3 3 4 2 4 1 1 3 2 2 1 2 2 2 1 2 4 1 2 5 4 2 2 2 3 5 5 2 3
#> [21781] 2 1 3 2 5 2 3 2 1 2 2 4 2 4 3 3 3 2 3 1 4 5 1 5 3 1 4 2 3 1 5 5 3 5 5 2
#> [21817] 2 1 2 4 3 2 2 1 2 2 2 5 5 2 1 3 5 5 3 2 4 2 2 2 3 2 2 5 3 1 2 5 1 5 4 1
#> [21853] 1 3 2 2 1 4 4 5 5 1 5 1 5 2 2 1 3 2 2 2 2 4 3 5 4 5 2 4 2 1 4 1 5 2 4 2
#> [21889] 2 2 5 4 1 1 2 1 2 5 5 5 1 4 5 2 5 2 5 1 5 5 3 2 2 5 3 2 1 1 5 3 5 2 2 3
#> [21925] 3 2 5 5 3 2 4 2 3 4 2 3 2 5 3 1 3 2 3 2 4 2 5 2 4 4 3 3 2 2 4 3 2 1 2 2
#> [21961] 2 3 5 2 1 3 3 1 2 2 1 5 5 1 2 4 3 1 2 4 3 2 4 1 2 2 2 3 5 5 2 2 5 3 3 2
#> [21997] 1 2 5 2 2 2 1 5 2 1 1 1 4 5 3 1 2 2 2 3 4 2 5 4 3 2 3 4 3 5 4 2 5 2 4 1
#> [22033] 3 2 5 1 2 2 1 3 1 3 2 1 4 5 2 5 3 2 3 1 4 1 1 2 3 2 4 2 5 1 1 3 2 4 1 4
#> [22069] 5 1 2 2 5 4 2 4 2 3 4 1 5 4 2 1 3 2 4 1 5 1 3 1 2 3 4 5 2 2 2 1 2 3 3 3
#> [22105] 4 5 3 5 3 5 4 1 5 4 5 1 2 3 2 5 4 4 5 1 4 2 3 2 2 4 3 4 2 1 4 4 2 2 4 2
#> [22141] 2 2 5 4 1 3 2 5 2 2 5 5 1 2 2 5 1 1 3 3 1 1 2 5 2 2 4 4 1 4 5 1 4 2 3 1
#> [22177] 3 2 5 1 4 1 2 5 3 2 1 4 4 3 3 3 3 2 5 3 2 4 1 5 2 5 2 5 5 5 1 5 3 2 5 2
#> [22213] 2 1 2 5 5 1 1 2 3 2 2 4 2 1 2 5 2 2 2 2 2 5 5 1 3 2 2 4 5 1 2 3 2 5 5 2
#> [22249] 3 3 3 5 2 3 1 2 1 2 2 2 5 5 2 5 5 5 1 2 2 5 3 2 5 3 1 4 1 3 5 3 2 1 2 3
#> [22285] 2 5 2 2 4 3 3 2 4 3 2 4 1 2 2 1 2 2 2 2 5 4 2 3 3 2 3 1 2 5 5 1 1 2 5 3
#> [22321] 1 2 4 2 2 2 1 3 2 1 2 5 5 4 4 2 2 2 2 5 2 5 2 2 2 2 2 4 2 5 2 1 4 3 4 1
#> [22357] 5 5 3 1 5 1 3 4 3 2 1 5 1 5 5 5 5 4 3 5 4 1 2 2 2 2 3 4 3 3 3 1 2 5 2 1
#> [22393] 3 2 3 3 5 2 2 2 2 1 2 1 3 2 1 3 3 3 2 5 3 1 2 5 5 3 2 1 1 5 3 5 2 2 2 2
#> [22429] 3 4 2 5 5 5 2 1 2 1 3 2 2 2 1 3 2 4 2 4 1 3 1 4 3 5 2 3 2 5 1 2 2 3 1 2
#> [22465] 3 4 4 3 5 3 2 3 2 2 4 4 2 2 2 4 2 4 1 3 3 3 2 1 5 5 3 2 2 2 2 2 3 5 4 2
#> [22501] 2 2 3 2 2 5 5 5 3 5 2 1 3 4 2 4 3 2 3 3 1 5 5 4 5 4 4 5 5 2 2 5 4 1 3 5
#> [22537] 5 2 2 2 2 1 3 2 4 3 4 2 4 2 2 3 2 1 5 2 2 2 2 5 2 5 1 5 5 5 3 3 3 2 5 1
#> [22573] 3 3 3 2 2 2 3 2 2 4 5 5 3 3 3 3 2 2 4 4 2 3 2 4 2 3 5 2 3 3 3 1 2 2 2 1
#> [22609] 4 2 2 4 2 2 3 1 4 1 3 5 5 5 5 1 2 3 3 1 3 2 2 2 2 3 2 2 4 2 2 2 2 5 4 2
#> [22645] 3 2 2 2 4 2 3 3 4 4 5 5 3 2 2 2 2 3 3 2 2 3 5 3 3 2 2 4 2 3 3 2 4 1 3 1
#> [22681] 3 2 3 2 3 3 4 5 1 5 2 5 2 3 3 5 2 5 3 2 2 2 3 5 2 2 3 5 2 2 3 3 3 4 2 2
#> [22717] 2 2 2 3 2 2 4 2 2 4 2 5 2 5 2 5 5 2 5 1 2 2 3 3 2 2 5 3 2 1 1 2 4 1 2 1
#> [22753] 5 4 3 2 2 2 3 2 1 2 1 2 2 1 2 2 5 2 3 3 3 1 2 3 2 5 1 1 2 2 1 5 2 5 3 5
#> [22789] 1 2 5 3 3 2 5 2 4 5 2 5 3 3 4 1 2 5 2 4 2 4 3 2 3 2 4 5 3 2 1 4 1 5 2 2
#> [22825] 1 3 3 2 3 3 2 4 5 3 5 1 2 2 5 4 2 3 1 1 3 2 1 2 5 5 4 2 2 1 4 3 1 1 3 2
#> [22861] 1 4 1 1 5 3 2 3 3 2 5 2 2 1 5 5 2 5 3 2 5 2 3 2 1 2 5 5 3 1 2 1 1 2 5 2
#> [22897] 2 5 2 1 2 5 3 5 4 2 5 3 1 4 2 5 2 2 1 2 2 3 5 2 1 1 2 1 1 2 1 5 4 3 5 1
#> [22933] 2 2 3 3 2 2 5 2 5 2 5 1 3 2 2 2 5 2 2 2 5 3 3 3 2 4 2 2 3 2 2 2 4 5 1 4
#> [22969] 3 3 5 1 3 3 2 1 2 3 3 3 2 3 2 3 2 5 2 5 2 5 4 2 3 2 3 2 5 3 2 1 2 5 3 4
#> [23005] 1 2 1 3 2 2 5 3 2 4 2 2 4 1 4 3 4 4 3 1 3 2 3 2 5 2 2 2 3 5 1 1 3 3 3 3
#> [23041] 5 3 4 2 2 2 2 2 1 5 5 2 3 2 2 5 2 2 3 2 2 1 5 2 2 4 2 1 2 3 2 5 2 2 3 2
#> [23077] 3 2 5 2 2 5 2 1 2 5 5 3 5 3 1 2 3 2 1 2 3 3 2 3 2 4 2 3 2 5 4 4 5 2 2 3
#> [23113] 2 3 5 4 2 3 3 1 4 2 5 2 5 2 2 1 1 1 3 5 2 1 2 2 2 1 2 3 1 3 2 4 5 1 4 5
#> [23149] 2 2 5 2 2 3 1 3 5 1 5 2 2 3 4 5 3 2 2 1 3 2 3 4 2 2 2 3 1 4 3 2 4 2 3 5
#> [23185] 3 2 5 2 2 2 5 4 1 3 1 2 2 1 3 3 3 4 3 1 2 1 2 5 2 2 1 2 2 2 1 5 2 4 2 2
#> [23221] 2 2 5 2 2 2 1 2 2 3 2 2 2 1 4 2 2 2 5 3 3 4 2 2 5 5 2 5 4 2 5 2 2 4 3 5
#> [23257] 2 5 2 2 2 5 3 1 2 3 5 2 3 2 3 5 2 4 2 4 2 2 2 3 2 2 2 2 5 1 3 2 4 3 3 2
#> [23293] 2 3 3 3 5 3 1 5 2 5 5 2 5 1 2 4 3 5 3 2 1 1 4 4 3 5 3 4 5 5 2 3 4 5 2 2
#> [23329] 5 4 3 3 3 2 1 1 3 2 5 1 5 3 4 1 3 1 2 2 3 2 2 3 1 2 5 2 1 4 1 1 1 4 5 2
#> [23365] 3 1 3 2 2 5 3 1 5 4 1 1 5 2 2 3 2 4 2 4 3 2 5 2 2 5 1 1 2 2 2 2 3 4 1 2
#> [23401] 5 2 2 2 5 4 2 3 1 2 2 2 3 2 3 2 1 3 2 5 1 5 2 5 5 2 2 5 4 2 5 5 2 3 1 5
#> [23437] 3 4 5 2 2 3 2 1 2 2 2 3 2 2 2 2 2 1 5 4 1 5 1 2 2 4 3 2 2 4 5 2 2 2 2 4
#> [23473] 5 5 2 2 2 1 2 2 5 1 5 2 2 5 2 3 2 1 1 5 1 5 2 3 3 2 2 1 3 5 5 2 2 2 3 3
#> [23509] 3 2 5 2 4 2 3 2 2 2 4 5 5 1 2 2 1 5 3 1 5 4 2 4 2 2 4 2 5 3 1 3 5 5 5 1
#> [23545] 2 2 5 2 5 2 1 5 1 2 1 1 2 4 3 3 2 4 3 1 4 5 3 2 5 3 1 1 5 5 3 2 2 3 1 4
#> [23581] 2 1 2 1 3 2 3 3 4 5 2 2 1 3 2 5 1 1 3 4 2 2 3 3 1 2 2 1 2 2 4 2 2 2 3 2
#> [23617] 2 3 5 2 3 1 5 1 3 2 2 5 2 3 3 5 2 1 4 3 3 3 4 5 3 3 2 1 3 2 2 3 1 3 2 2
#> [23653] 2 4 2 2 2 3 1 1 1 5 4 2 2 5 4 1 5 1 3 2 2 2 3 2 4 4 3 2 3 5 3 5 4 4 2 2
#> [23689] 2 4 1 1 3 4 2 5 5 5 1 4 1 2 2 4 2 1 1 2 3 2 1 4 3 2 5 5 2 4 1 2 2 2 3 3
#> [23725] 2 2 2 2 2 2 2 5 1 3 1 3 1 4 2 1 3 2 2 4 5 2 1 2 2 5 2 5 2 1 5 3 2 5 2 5
#> [23761] 2 4 4 2 5 4 5 4 1 2 5 4 3 3 3 2 5 2 2 3 3 2 2 3 3 2 3 3 2 2 5 2 1 2 2 2
#> [23797] 2 4 1 5 5 2 3 5 2 2 5 5 2 2 2 2 1 2 3 2 5 2 2 2 5 1 3 1 2 2 3 4 3 3 2 2
#> [23833] 2 3 2 5 3 2 3 3 5 3 2 1 3 5 5 2 1 1 1 2 1 3 4 2 5 3 4 4 2 4 2 5 2 5 2 5
#> [23869] 2 3 5 1 2 2 3 5 2 2 3 2 2 3 1 2 2 5 3 4 4 2 2 1 2 1 4 3 3 2 1 2 1 5 1 1
#> [23905] 1 2 5 3 4 2 2 3 2 3 2 2 4 2 5 5 3 2 4 5 3 2 5 3 3 1 2 5 3 1 3 1 2 2 3 3
#> [23941] 3 4 3 2 3 3 1 2 1 2 2 2 1 2 5 3 5 5 5 3 2 1 2 1 2 1 5 5 1 2 2 3 3 5 4 5
#> [23977] 1 3 5 4 3 3 3 4 2 2 2 1 3 2 1 5 2 2 2 3 2 1 2 5 5 5 2 1 2 4 3 4 5 2 3 3
#> [24013] 3 2 2 2 2 2 2 2 2 2 3 2 3 2 1 5 2 1 1 1 2 3 2 2 3 2 2 4 2 5 3 1 3 5 5 1
#> [24049] 2 4 4 3 3 4 4 4 4 1 2 2 4 3 2 2 2 1 1 4 2 5 3 2 2 3 3 4 2 3 2 1 4 3 3 2
#> [24085] 1 5 2 1 2 5 5 3 3 1 4 2 4 2 4 2 2 2 2 3 3 3 3 2 2 3 2 2 2 2 3 1 2 1 5 2
#> [24121] 2 3 1 1 2 5 5 3 4 1 4 2 3 1 3 5 2 1 5 2 3 2 2 4 1 5 1 2 2 2 3 5 4 4 2 2
#> [24157] 4 1 5 3 4 5 3 3 5 5 2 1 1 5 4 1 4 1 3 3 5 2 1 4 1 4 2 2 3 3 5 3 5 3 4 2
#> [24193] 3 3 2 2 4 1 4 5 2 2 4 3 5 1 5 2 2 2 1 5 5 4 5 4 2 2 5 5 4 4 2 2 4 2 4 4
#> [24229] 3 5 4 2 2 3 3 4 5 5 5 4 5 3 1 3 2 2 2 3 1 4 4 2 2 2 4 2 5 5 2 1 4 1 3 4
#> [24265] 2 3 2 2 1 2 2 2 2 4 2 2 2 2 4 5 2 3 4 5 5 3 5 2 4 2 3 3 2 3 2 3 2 2 2 4
#> [24301] 2 3 3 2 2 4 5 2 2 2 2 1 2 4 4 4 2 3 1 2 5 3 1 1 1 2 2 3 3 2 2 2 4 4 2 2
#> [24337] 3 2 2 3 1 2 2 2 1 3 1 3 2 3 1 3 4 2 4 5 2 5 4 2 3 3 2 4 3 2 5 3 5 2 5 1
#> [24373] 2 5 2 2 3 1 2 4 2 4 2 2 2 2 1 5 4 1 2 2 5 3 2 3 5 4 2 2 2 2 2 4 3 2 4 3
#> [24409] 2 3 3 4 5 5 2 2 2 3 4 2 5 5 2 2 2 5 3 2 1 3 2 2 4 5 2 3 5 4 2 2 5 5 1 3
#> [24445] 3 4 5 3 2 1 1 3 2 2 2 3 5 4 5 3 3 2 3 4 5 2 2 1 3 5 2 1 3 2 2 3 2 5 3 2
#> [24481] 5 2 2 4 4 3 3 4 2 1 3 1 4 4 2 1 2 3 3 1 3 4 3 2 2 5 2 2 3 4 4 1 2 4 2 2
#> [24517] 2 1 2 5 2 1 2 3 2 2 3 5 3 2 3 5 4 2 3 2 2 2 2 3 3 2 5 2 4 4 5 4 1 2 2 3
#> [24553] 2 1 2 5 2 3 1 2 4 3 2 1 5 5 2 1 2 2 5 3 3 3 2 5 4 2 2 3 4 3 5 3 2 4 3 2
#> [24589] 3 2 2 2 4 2 2 5 3 1 2 4 2 2 4 4 3 2 3 2 2 1 2 2 3 5 2 3 3 4 2 2 2 4 2 2
#> [24625] 3 2 2 2 2 1 1 3 5 5 2 4 2 2 4 2 3 4 2 1 5 3 3 4 3 2 3 2 2 1 1 1 3 3 4 2
#> [24661] 3 3 3 3 4 2 2 1 2 1 2 3 1 2 1 5 5 5 2 3 2 1 3 2 3 2 3 1 4 2 3 2 3 2 2 2
#> [24697] 2 2 3 3 2 3 5 3 5 3 5 5 3 3 2 5 2 4 2 2 5 5 4 5 1 1 3 1 4 1 3 2 2 2 1 5
#> [24733] 2 2 2 5 3 1 2 2 2 3 4 2 3 5 5 5 4 5 5 4 2 1 5 2 2 5 4 3 1 2 3 1 2 3 2 5
#> [24769] 1 3 1 4 2 3 2 5 5 4 2 5 2 2 4 3 3 3 2 1 3 2 3 3 1 2 1 2 5 3 5 2 2 5 1 1
#> [24805] 2 3 4 3 3 3 2 3 3 2 2 1 3 2 1 5 5 5 3 2 5 5 3 3 5 2 2 4 4 1 4 5 3 2 4 3
#> [24841] 4 4 1 5 1 3 5 5 5 5 2 5 4 2 5 2 3 3 2 2 2 2 2 1 4 1 3 3 1 4 3 3 5 3 3 3
#> [24877] 5 4 5 3 2 3 3 1 2 3 4 4 2 2 2 2 3 1 5 2 5 4 4 3 1 4 4 5 4 2 2 1 2 2 2 3
#> [24913] 3 2 1 4 3 3 3 3 2 3 4 1 4 5 5 2 1 2 5 5 2 5 2 5 2 2 4 2 5 2 5 2 5 3 3 4
#> [24949] 2 4 1 2 4 2 3 3 1 5 1 1 2 2 2 2 3 2 2 1 1 2 3 2 2 4 3 2 5 3 5 1 5 1 2 3
#> [24985] 2 5 3 2 4 5 3 2 1 5 2 3 2 2 1 1 3 2 1 3 3 5 5 2 5 3 2 4 4 2 2 1 1 2 2 5
#> [25021] 2 2 2 3 3 2 2 2 3 3 3 2 2 2 1 1 5 3 5 5 5 4 4 2 2 1 2 4 2 2 2 5 4 3 5 4
#> [25057] 2 5 3 2 3 3 2 3 4 4 3 4 3 2 2 2 2 1 5 3 3 3 1 3 2 3 3 2 2 4 2 2 1 2 3 5
#> [25093] 3 3 4 4 5 5 2 4 5 5 2 5 2 5 3 2 5 4 5 2 3 2 4 2 2 1 5 3 2 5 5 2 2 5 1 2
#> [25129] 5 4 2 4 3 2 2 4 2 5 2 4 5 3 3 4 4 2 3 3 2 2 1 1 3 1 2 1 2 3 2 2 5 5 1 2
#> [25165] 2 1 5 2 4 2 5 4 5 2 5 2 4 2 4 1 5 2 2 2 5 2 2 2 5 3 2 1 2 2 2 3 5 5 3 4
#> [25201] 5 2 4 4 3 3 2 1 2 5 2 2 5 2 1 3 5 3 2 4 1 1 2 2 3 5 3 1 4 2 2 4 2 1 4 5
#> [25237] 2 3 3 3 4 2 2 2 1 5 2 1 3 2 3 3 2 2 2 3 2 1 2 1 3 3 5 2 2 5 2 1 3 3 2 5
#> [25273] 2 2 4 1 3 2 2 4 2 2 2 2 2 5 4 1 2 2 5 3 2 2 2 2 2 4 3 5 5 4 5 2 3 3 2 1
#> [25309] 1 1 2 5 2 4 4 4 3 3 4 2 3 2 5 1 2 2 3 2 1 5 5 3 1 1 4 3 3 4 2 5 1 5 3 2
#> [25345] 2 2 4 4 2 2 2 3 4 2 2 3 2 2 2 2 2 2 1 2 2 2 3 3 2 2 3 5 5 5 3 2 2 5 2 2
#> [25381] 2 2 1 2 5 5 2 2 2 3 4 2 2 5 5 2 3 5 4 1 3 5 3 2 2 3 3 2 1 4 2 2 4 4 2 2
#> [25417] 5 1 2 5 2 3 3 2 3 4 2 5 4 5 4 3 1 3 2 3 3 2 3 4 4 2 3 3 3 4 2 5 1 3 3 3
#> [25453] 5 3 2 2 2 3 3 1 1 2 3 2 5 2 4 2 1 2 2 2 4 1 1 2 5 2 4 5 2 5 2 4 3 3 2 4
#> [25489] 3 1 2 5 2 2 3 2 1 2 2 1 5 4 2 3 2 2 4 4 5 2 4 5 5 4 3 2 1 2 5 4 2 1 5 5
#> [25525] 2 3 2 2 2 5 2 5 3 3 1 2 3 5 1 2 4 2 2 1 1 2 5 1 2 5 5 2 1 2 3 2 3 2 4 1
#> [25561] 5 3 2 3 4 5 1 3 5 5 5 2 1 3 3 2 5 5 2 3 5 5 2 3 3 1 5 1 5 5 2 2 2 2 5 1
#> [25597] 4 3 1 1 2 5 2 2 4 2 3 3 3 2 2 5 2 1 2 5 3 2 3 5 2 2 2 1 2 3 2 1 2 2 2 2
#> [25633] 1 5 4 5 4 3 1 4 4 2 5 3 3 3 3 2 3 3 2 1 2 3 2 2 3 3 3 3 2 1 4 3 1 1 3 2
#> [25669] 4 2 5 3 2 5 3 2 2 5 4 2 2 5 2 3 4 5 2 2 2 4 5 1 1 1 2 4 3 5 3 3 3 1 2 3
#> [25705] 2 3 2 2 5 2 2 2 1 3 2 5 1 2 5 1 5 2 5 3 3 2 1 3 3 2 1 3 2 2 5 2 4 1 5 3
#> [25741] 3 2 3 3 1 1 2 5 2 3 1 2 2 5 2 1 2 2 5 2 5 3 5 4 2 5 2 1 5 5 3 1 1 3 5 2
#> [25777] 2 2 1 3 2 5 5 3 3 1 4 1 5 2 2 2 3 3 2 5 1 1 2 5 2 2 1 2 2 4 4 1 3 2 2 2
#> [25813] 2 4 5 3 1 2 1 4 4 2 2 2 4 3 2 3 1 2 2 2 2 2 1 1 2 5 1 3 3 5 2 4 2 3 3 5
#> [25849] 5 2 2 2 3 1 1 1 2 1 1 4 2 3 1 4 3 3 3 1 5 2 1 3 3 2 2 3 2 2 5 2 2 1 3 3
#> [25885] 3 3 4 4 3 4 1 3 3 3 1 4 1 2 1 4 5 5 2 2 1 2 2 2 2 3 3 5 2 4 3 2 4 3 2 4
#> [25921] 1 4 2 1 2 2 1 2 3 4 2 5 3 2 2 2 2 4 1 5 5 3 2 3 5 4 3 5 4 1 4 3 2 3 5 1
#> [25957] 4 3 3 2 2 1 4 1 2 2 2 2 2 4 2 2 3 3 2 2 2 2 1 2 1 5 3 5 1 3 5 1 2 3 2 4
#> [25993] 4 3 3 2 3 1 5 3 4 5 2 3 2 1 4 5 2 3 4 2 2 2 3 1 2 5 2 1 4 3 4 2 2 3 2 4
#> [26029] 2 2 4 2 5 3 1 3 5 2 3 4 5 2 2 2 1 3 3 1 1 5 5 1 5 5 5 5 2 1 3 2 1 1 5 1
#> [26065] 3 5 2 2 2 1 3 2 1 5 2 2 2 5 3 2 2 1 4 3 3 1 4 2 5 5 5 3 2 2 2 2 2 2 5 1
#> [26101] 2 3 5 2 1 2 3 2 1 3 2 3 2 2 2 3 4 5 2 4 2 5 3 3 2 1 2 2 5 2 2 1 5 4 2 5
#> [26137] 2 5 2 4 4 2 2 5 2 5 2 2 4 1 3 1 3 2 1 3 2 1 2 4 2 5 3 3 2 5 2 2 3 5 3 4
#> [26173] 5 4 3 4 4 3 2 5 5 2 2 5 2 5 4 4 3 2 1 3 5 2 2 5 1 5 4 4 3 4 5 4 2 1 2 1
#> [26209] 3 5 2 2 2 2 2 2 2 5 1 2 3 4 3 3 2 2 2 5 3 2 3 4 2 3 3 1 2 2 3 4 2 1 3 4
#> [26245] 2 2 1 3 5 1 2 2 2 3 1 2 3 3 3 2 2 4 3 2 4 2 2 3 2 2 3 2 2 5 4 2 2 1 2 4
#> [26281] 2 1 2 2 1 2 2 1 3 3 3 5 3 3 3 4 5 5 4 2 5 1 1 5 2 4 2 2 5 2 3 3 5 2 2 2
#> [26317] 1 2 2 2 4 3 2 4 4 4 2 3 2 3 4 5 1 2 2 3 5 2 2 2 2 2 2 1 3 1 1 1 5 2 2 2
#> [26353] 3 5 2 2 4 3 3 2 5 3 2 3 2 5 4 2 2 2 1 1 1 3 2 3 2 3 2 2 2 2 3 2 2 3 2 1
#> [26389] 3 3 1 2 2 3 4 5 3 2 3 2 5 3 2 3 4 2 2 3 2 5 2 5 2 3 2 2 2 2 1 2 2 3 5 3
#> [26425] 2 4 2 3 2 5 1 1 3 3 3 2 2 2 4 5 5 2 1 2 2 5 4 2 4 2 3 2 4 4 3 3 2 2 2 2
#> [26461] 2 2 3 5 4 4 5 2 2 2 5 5 5 2 4 2 2 3 5 3 3 2 2 2 4 2 3 1 2 2 1 2 5 4 1 3
#> [26497] 5 3 2 5 2 3 2 2 2 2 3 1 4 2 1 2 5 5 2 3 1 3 2 2 5 3 2 3 2 4 2 3 5 5 5 4
#> [26533] 2 2 4 3 3 2 3 3 1 2 3 1 1 1 2 3 4 2 2 5 1 3 2 1 1 2 2 4 2 3 3 5 2 3 4 5
#> [26569] 1 3 2 3 4 2 5 5 5 3 1 3 2 4 2 3 5 2 4 2 5 3 5 2 5 4 4 2 5 2 1 5 5 3 1 2
#> [26605] 5 2 2 3 1 4 3 2 4 4 2 3 5 4 5 4 2 5 5 4 2 5 1 2 2 3 2 5 2 2 2 2 4 4 3 3
#> [26641] 5 2 2 2 1 3 2 1 1 3 1 5 1 2 2 5 1 2 2 5 5 3 2 2 3 1 2 2 5 3 5 3 4 2 5 3
#> [26677] 3 3 2 2 2 4 1 2 2 3 5 2 1 5 5 3 5 5 2 3 5 1 1 2 1 5 1 5 5 1 1 5 1 2 1 2
#> [26713] 2 1 3 1 2 2 5 2 5 2 3 1 2 2 2 4 5 2 5 2 2 1 2 2 3 2 3 5 3 2 2 5 5 3 2 1
#> [26749] 5 3 2 2 3 1 5 3 5 5 2 2 2 2 2 1 3 2 5 1 5 2 2 2 2 3 4 2 1 1 2 1 4 3 1 1
#> [26785] 2 2 5 2 2 3 2 2 2 5 5 1 1 1 2 4 2 5 1 1 5 2 3 5 2 2 1 2 3 2 3 4 2 4 4 2
#> [26821] 2 2 2 4 2 2 5 2 2 3 2 2 5 1 2 4 3 4 3 4 4 2 5 3 2 3 3 1 4 2 2 1 3 2 2 1
#> [26857] 5 2 5 3 4 3 2 5 5 4 3 3 3 3 4 2 5 4 3 3 2 4 2 5 3 5 2 2 3 2 1 5 5 5 1 5
#> [26893] 3 4 2 3 2 2 3 3 1 5 3 1 3 2 2 5 2 1 3 2 2 3 3 5 5 5 4 2 5 3 1 4 2 2 2 2
#> [26929] 1 2 5 4 2 1 2 5 3 2 2 1 4 2 2 4 2 2 2 3 2 2 4 4 3 2 2 2 3 2 2 5 5 4 3 4
#> [26965] 5 2 3 2 4 2 2 5 1 2 2 4 1 2 2 1 2 1 4 2 2 5 2 3 1 2 5 2 3 5 5 2 1 3 2 4
#> [27001] 3 2 5 5 4 2 2 2 3 5 2 2 5 4 2 5 3 5 4 4 2 3 3 2 4 4 2 5 5 1 5 2 2 2 2 3
#> [27037] 5 1 3 5 1 1 1 2 5 2 5 5 5 5 3 2 4 2 2 5 3 1 1 2 3 4 2 2 2 2 2 2 2 2 1 5
#> [27073] 2 3 3 2 3 5 3 1 2 2 4 3 5 3 4 5 2 2 2 2 5 2 5 5 2 2 4 4 1 2 5 4 3 3 3 1
#> [27109] 1 3 2 2 1 5 1 5 2 5 2 2 1 2 1 1 3 2 2 3 3 2 2 3 1 1 5 5 2 2 2 2 2 3 3 4
#> [27145] 2 2 2 3 3 2 5 2 3 3 5 2 2 5 3 4 2 1 1 3 2 5 2 2 1 2 2 2 2 4 2 2 3 1 3 5
#> [27181] 1 1 4 1 1 1 2 3 1 2 1 2 4 2 1 3 2 5 4 3 3 4 2 2 3 3 5 2 2 1 2 3 5 4 1 2
#> [27217] 2 3 2 2 1 2 4 2 1 2 2 5 2 3 2 3 4 2 1 2 2 3 2 2 1 2 3 3 5 5 2 5 3 5 1 5
#> [27253] 5 3 1 1 3 3 5 2 5 2 3 2 2 1 5 5 3 3 2 4 2 2 4 2 2 2 2 5 2 2 2 3 3 2 2 4
#> [27289] 5 2 2 3 3 4 2 1 2 5 2 3 1 2 2 2 4 2 3 3 5 2 2 1 1 5 2 2 2 1 2 2 2 3 3 4
#> [27325] 5 3 2 3 1 2 4 2 5 2 2 2 2 2 2 2 2 5 2 1 5 5 2 5 2 1 1 2 4 2 1 2 1 5 2 2
#> [27361] 3 2 4 2 5 1 3 2 5 2 5 3 2 5 2 2 3 5 2 3 1 3 2 3 2 3 2 4 2 2 2 2 3 3 5 3
#> [27397] 5 2 2 5 1 3 5 3 2 2 5 3 2 5 5 2 2 2 4 2 2 3 1 3 2 5 4 2 2 3 2 3 4 1 4 1
#> [27433] 1 5 3 3 2 4 2 3 2 4 2 3 1 2 3 1 2 2 4 2 3 3 1 2 2 1 5 5 4 2 5 4 2 4 5 2
#> [27469] 4 3 2 1 2 5 4 3 2 5 5 5 3 2 4 2 5 3 3 1 3 1 3 5 4 1 2 1 2 2 5 4 3 1 5 5
#> [27505] 3 2 3 2 2 1 3 2 2 2 4 4 3 3 2 3 5 5 5 3 5 2 5 5 1 5 3 2 5 5 5 2 3 5 2 2
#> [27541] 3 3 3 3 3 1 1 5 3 1 4 1 3 5 3 1 3 1 3 5 4 3 2 2 5 2 1 2 5 2 3 4 3 2 2 2
#> [27577] 3 4 2 2 5 2 2 3 5 1 5 5 2 3 4 1 2 2 1 4 1 3 5 2 5 2 5 3 3 2 3 5 4 4 1 5
#> [27613] 3 2 2 5 3 1 4 2 2 2 5 4 2 2 5 2 4 2 3 1 1 5 2 2 2 3 2 2 1 1 2 2 3 3 5 2
#> [27649] 3 1 5 4 3 1 4 4 2 2 4 1 3 4 3 3 3 2 2 5 4 3 5 5 5 5 1 2 3 3 4 2 5 5 5 5
#> [27685] 5 2 2 4 4 3 5 2 2 2 5 3 2 5 1 2 2 2 5 2 3 2 5 4 5 5 4 3 5 4 5 3 2 2 1 2
#> [27721] 1 2 2 5 1 2 3 3 5 2 2 2 4 5 2 2 1 1 2 1 5 3 2 1 4 2 3 5 3 1 2 3 5 1 5 3
#> [27757] 3 5 2 1 2 2 5 2 1 1 3 2 5 5 3 3 2 1 2 3 2 5 2 2 4 3 1 3 2 2 2 2 5 2 5 5
#> [27793] 2 3 2 5 2 3 4 2 5 1 2 2 2 3 5 1 5 2 2 3 2 3 2 3 5 5 4 2 4 1 1 3 2 2 2 4
#> [27829] 3 3 3 2 5 5 2 1 3 3 2 4 5 2 3 2 2 2 3 2 5 2 2 3 4 5 3 2 2 1 3 2 2 2 5 3
#> [27865] 2 5 1 1 2 1 2 3 4 4 2 2 3 3 5 5 3 2 2 3 1 4 5 2 5 3 3 3 3 2 2 4 5 2 2 5
#> [27901] 2 1 1 2 3 5 3 1 2 2 1 3 2 3 4 3 2 2 1 3 1 2 4 2 2 3 4 1 3 3 5 1 3 2 3 2
#> [27937] 2 3 2 4 1 2 1 4 1 2 3 5 2 2 4 3 4 2 2 5 1 4 5 2 4 4 5 1 3 5 4 2 5 3 1 4
#> [27973] 3 5 2 1 3 4 5 3 2 1 1 3 2 5 3 4 4 5 2 4 1 2 2 1 2 2 1 2 2 4 3 5 4 2 4 2
#> [28009] 5 1 2 2 3 2 1 3 2 2 4 2 4 5 4 1 5 3 2 5 3 2 2 3 2 4 2 2 5 1 3 5 4 3 2 2
#> [28045] 4 2 2 1 2 2 2 2 5 2 3 2 2 5 1 1 2 5 5 3 5 3 1 2 2 2 2 2 2 2 3 2 4 2 2 2
#> [28081] 2 2 2 2 5 2 3 3 5 1 3 3 5 5 3 1 2 2 2 3 2 2 2 2 2 2 5 2 2 3 2 3 2 2 2 2
#> [28117] 1 5 3 2 2 3 1 1 2 2 2 2 4 2 2 1 1 1 3 2 4 2 3 5 3 2 2 2 5 5 4 3 3 5 5 2
#> [28153] 2 3 2 2 5 3 5 3 5 3 3 3 5 5 2 2 5 3 2 2 2 2 1 2 2 1 1 3 3 3 5 2 4 3 2 3
#> [28189] 2 3 4 5 3 2 1 3 2 1 5 5 2 3 1 1 5 2 1 2 2 1 5 5 2 1 2 3 2 5 1 3 2 2 5 2
#> [28225] 2 2 2 2 2 5 2 4 3 3 3 2 2 5 2 2 4 2 5 5 2 1 1 5 3 3 4 3 3 4 2 2 3 2 4 3
#> [28261] 1 2 5 3 2 4 1 2 2 5 2 2 2 1 2 2 4 5 5 2 5 3 5 5 2 3 5 5 4 3 3 2 5 2 2 3
#> [28297] 1 5 5 4 2 2 2 3 5 5 1 5 3 2 3 3 2 3 3 5 3 2 3 2 5 2 1 2 2 2 1 2 2 3 1 1
#> [28333] 1 2 4 3 4 2 5 3 2 5 2 2 2 2 2 2 2 2 3 3 4 3 2 5 5 3 1 5 5 2 3 4 2 3 2 3
#> [28369] 5 5 2 3 3 5 3 3 4 4 2 1 1 2 1 2 3 3 3 3 5 5 2 2 2 2 2 2 5 5 4 4 2 2 5 2
#> [28405] 5 3 2 5 2 2 2 2 2 2 5 1 2 5 5 4 1 2 1 3 1 2 3 2 2 2 5 5 5 2 2 2 1 3 2 2
#> [28441] 3 2 3 3 5 2 3 4 3 1 5 4 5 3 2 2 2 5 3 3 2 1 3 1 4 3 5 5 2 3 1 2 2 2 2 2
#> [28477] 3 5 3 4 2 5 3 1 5 2 1 1 3 3 2 2 5 1 4 1 3 1 1 5 3 2 5 5 5 3 2 1 2 1 3 5
#> [28513] 1 4 2 2 3 4 2 3 5 1 2 4 3 5 2 2 2 2 5 3 2 1 1 2 5 2 5 4 5 1 2 3 4 1 2 1
#> [28549] 2 4 2 1 5 2 3 2 3 1 3 5 2 3 2 4 3 5 2 2 5 3 1 5 4 2 1 3 1 2 2 2 4 2 5 4
#> [28585] 2 2 2 3 3 3 2 4 5 4 1 3 5 2 2 1 1 3 2 2 5 2 1 2 2 3 5 5 2 3 1 2 2 2 2 1
#> [28621] 2 5 2 2 2 5 4 2 3 3 1 2 3 4 2 1 3 4 4 2 5 1 3 3 2 3 3 5 2 1 1 2 4 2 4 2
#> [28657] 1 2 2 5 5 2 1 2 2 1 5 5 2 3 5 2 3 3 3 1 2 5 1 5 1 4 5 4 3 2 1 1 4 3 2 3
#> [28693] 2 1 1 3 2 5 4 2 5 2 2 4 1 2 4 3 4 2 3 2 5 5 2 4 2 1 3 3 4 3 2 3 3 2 2 2
#> [28729] 2 5 5 4 1 3 3 1 5 2 2 5 2 2 2 3 3 2 1 2 5 2 2 4 3 2 3 2 1 4 4 5 3 1 2 4
#> [28765] 3 4 2 3 1 2 2 3 5 5 5 3 5 5 5 2 1 5 1 2 2 1 5 5 2 1 5 2 3 1 1 3 3 3 2 1
#> [28801] 2 5 4 4 2 1 2 5 2 3 2 1 2 1 3 1 3 5 2 3 3 2 1 1 5 5 2 5 2 4 4 2 2 4 3 2
#> [28837] 5 4 2 3 5 1 5 5 5 2 2 2 3 5 2 3 1 5 1 2 5 2 3 2 5 2 4 4 2 5 5 3 1 3 2 1
#> [28873] 2 2 5 3 3 5 5 5 1 2 3 3 3 2 2 2 2 1 4 5 3 1 3 2 3 2 3 1 4 2 5 3 2 2 2 3
#> [28909] 2 2 1 2 4 2 2 3 5 4 4 2 2 2 5 1 5 3 5 3 1 5 3 4 4 2 3 5 2 2 1 1 5 2 5 4
#> [28945] 4 1 4 1 5 3 3 2 3 3 3 3 1 2 3 5 3 3 4 2 3 1 5 2 4 2 2 1 4 2 2 2 3 3 2 4
#> [28981] 2 2 2 2 3 2 5 1 4 3 3 4 1 2 5 1 2 1 5 3 2 1 3 2 2 2 2 2 2 2 3 2 4 3 4 3
#> [29017] 3 4 2 2 1 2 4 5 3 3 5 3 2 3 2 2 1 4 2 5 3 4 1 5 2 2 2 5 2 2 3 1 1 5 2 2
#> [29053] 3 1 3 5 2 2 1 1 1 3 1 3 1 5 1 5 5 2 5 2 1 5 3 1 2 3 4 1 3 3 3 5 5 3 3 1
#> [29089] 2 5 3 2 2 1 3 4 2 4 2 1 5 1 5 4 2 3 2 1 5 2 1 4 2 2 1 2 5 3 2 2 1 3 2 4
#> [29125] 2 3 2 2 3 3 2 4 2 5 4 2 4 5 2 3 4 3 4 3 2 5 4 2 5 2 2 1 1 4 5 4 5 2 2 3
#> [29161] 4 2 4 2 4 3 3 5 5 2 3 5 1 5 2 2 2 2 3 5 1 2 4 3 2 2 2 2 4 3 2 2 1 1 1 2
#> [29197] 4 2 1 4 2 5 2 5 2 2 4 2 2 2 3 2 2 2 1 2 4 1 2 1 2 2 2 1 2 3 2 3 4 3 3 2
#> [29233] 3 2 2 4 2 2 5 3 2 2 2 4 3 4 2 2 2 1 2 2 4 4 4 2 3 3 5 4 2 3 2 2 2 5 5 4
#> [29269] 3 5 5 2 5 1 4 5 2 2 2 3 2 2 2 5 2 2 4 2 3 3 3 3 3 5 4 1 2 2 1 2 2 2 5 2
#> [29305] 2 3 2 5 2 2 4 3 3 2 2 2 2 2 3 5 2 5 2 2 2 5 1 5 5 4 2 2 2 2 3 3 2 1 2 2
#> [29341] 2 2 2 5 3 2 2 4 2 3 5 2 3 1 1 3 3 2 2 2 3 2 5 2 2 2 3 1 3 1 5 5 5 3 2 4
#> [29377] 2 3 3 3 4 2 3 2 3 3 2 3 3 3 1 1 2 4 2 4 2 4 3 2 5 1 4 3 3 5 1 2 3 1 2 3
#> [29413] 2 5 4 2 3 3 2 5 2 2 5 1 2 1 3 5 2 2 3 2 2 2 5 3 1 2 2 2 1 4 4 5 1 2 2 2
#> [29449] 5 1 5 2 5 1 2 3 2 1 2 2 2 3 5 2 4 2 3 3 3 1 2 4 2 3 3 3 3 2 5 2 3 4 1 4
#> [29485] 2 4 3 2 1 3 2 2 2 1 1 5 1 1 5 2 3 4 1 2 4 4 3 5 1 3 3 2 1 2 3 4 2 2 2 1
#> [29521] 5 3 5 2 5 4 3 3 2 2 1 5 2 3 5 2 3 1 3 2 3 5 3 5 2 2 2 1 2 4 4 4 4 3 2 4
#> [29557] 1 2 3 5 3 3 2 2 2 2 2 2 5 4 2 3 3 2 5 2 1 2 2 5 3 5 2 1 2 2 5 3 5 2 1 2
#> [29593] 1 3 2 1 1 4 5 2 5 2 5 2 4 2 2 2 2 4 3 3 2 5 5 1 1 2 2 3 4 5 1 4 2 2 2 3
#> [29629] 3 2 3 2 3 1 4 3 2 5 3 5 2 1 1 2 2 2 2 3 5 1 5 3 4 5 3 4 3 2 2 2 4 2 1 2
#> [29665] 1 5 2 5 3 2 5 5 2 1 2 2 2 3 3 5 3 3 1 5 2 5 4 2 1 2 4 2 5 5 1 5 2 3 2 1
#> [29701] 1 1 4 2 5 2 5 2 2 4 4 5 4 1 1 5 2 1 4 2 2 1 5 3 4 2 2 2 1 2 3 3 4 5 1 3
#> [29737] 2 5 2 2 4 2 4 2 1 3 2 4 2 2 3 1 2 5 3 2 2 3 2 3 3 2 2 2 2 5 4 2 2 3 1 1
#> [29773] 4 4 5 2 1 3 2 4 5 2 1 1 2 5 3 1 5 2 1 3 2 4 1 3 4 3 3 1 5 2 5 4 5 2 3 4
#> [29809] 3 1 5 5 1 4 2 2 1 3 5 2 3 1 5 1 4 2 2 3 2 1 5 1 5 2 3 5 2 4 1 1 5 4 5 5
#> [29845] 2 2 5 1 4 1 4 4 3 3 2 2 2 4 1 1 3 1 5 1 2 3 4 2 4 5 2 2 2 2 2 2 2 2 1 4
#> [29881] 3 3 3 1 3 3 2 5 1 5 1 4 2 2 1 1 1 4 4 4 2 4 3 4 1 5 5 1 1 5 2 3 3 5 2 1
#> [29917] 2 4 4 4 5 1 3 2 5 4 5 2 2 2 2 3 3 3 2 5 2 5 5 5 4 4 2 2 5 2 3 2 5 3 5 5
#> [29953] 5 4 4 4 5 5 3 2 2 3 3 2 1 2 4 1 1 1 1 1 1 4 4 4 2 4 5 5 2 3 2 2 3 1 3 2
#> [29989] 3 1 5 1 3 2 4 4 3 2 2 5 3 5 2 2 2 2 1 2 2 2 4 3 3 4 1 1 5 2 5 5 3 4 3 3
#> [30025] 3 5 3 3 3 3 1 1 5 5 4 5 3 1 5 2 2 4 5 2 2 2 2 1 2 3 3 2 2 2 1 2 3 2 2 2
#> [30061] 5 4 1 5 3 1 5 3 2 2 4 5 2 5 2 3 5 2 3 3 1 2 2 5 3 2 2 4 3 5 4 2 1 3 5 3
#> [30097] 2 2 3 2 2 3 3 3 2 3 2 3 2 1 2 2 5 1 2 4 4 5 2 3 5 3 2 5 3 2 2 3 2 5 5 4
#> [30133] 5 4 2 2 4 2 5 1 3 3 3 3 3 2 2 2 4 5 5 5 1 4 2 2 4 3 2 5 3 1 4 2 2 2 2 1
#> [30169] 5 3 2 5 5 5 1 1 2 5 5 2 1 2 5 1 2 2 4 1 5 5 1 2 2 3 1 3 3 5 5 3 5 2 3 2
#> [30205] 3 2 1 5 5 2 1 2 2 3 3 2 4 2 3 2 4 5 2 2 4 2 3 5 2 2 2 3 5 3 2 3 1 2 3 2
#> [30241] 2 5 3 1 1 2 2 3 3 2 3 1 1 2 5 1 2 2 2 4 2 3 5 3 5 5 3 2 1 2 3 2 4 3 2 5
#> [30277] 2 1 1 5 2 4 2 2 2 2 2 3 1 2 2 2 2 3 2 4 2 3 2 3 2 4 5 3 3 2 2 3 5 3 4 2
#> [30313] 5 2 4 4 5 3 4 4 2 2 2 3 3 2 3 4 3 3 3 3 4 2 2 1 3 4 2 4 1 4 1 5 2 3 1 1
#> [30349] 2 3 5 5 4 2 1 3 2 1 3 2 1 5 2 3 3 5 2 5 2 2 2 2 3 2 3 5 2 2 2 2 2 2 1 3
#> [30385] 4 5 1 4 1 2 1 1 2 3 1 5 3 4 2 1 2 5 3 1 3 5 1 2 3 5 4 1 2 2 3 1 5 2 2 2
#> [30421] 2 5 3 4 5 2 2 4 3 2 3 5 1 2 5 2 3 4 5 1 1 3 4 4 3 5 5 3 3 5 1 5 5 2 2 2
#> [30457] 3 2 3 3 2 5 1 4 2 2 2 5 3 5 3 5 3 5 2 2 2 2 4 2 2 4 5 2 5 2 3 1 4 2 2 3
#> [30493] 5 1 5 2 2 2 1 1 2 2 2 2 3 3 3 1 1 1 2 3 2 2 4 5 5 4 2 2 2 5 1 5 3 4 3 2
#> [30529] 3 3 4 4 3 5 4 4 2 1 5 2 5 2 4 2 2 5 3 2 2 1 3 4 2 3 5 2 2 2 5 3 2 5 5 2
#> [30565] 2 4 4 3 3 3 2 3 3 4 2 5 1 2 2 2 2 1 3 2 2 1 5 3 1 2 1 5 2 3 2 1 3 4 3 1
#> [30601] 5 3 1 2 1 1 2 5 1 2 5 2 4 4 2 3 2 2 4 4 2 2 3 2 1 5 1 2 3 5 1 1 2 3 2 4
#> [30637] 2 4 1 4 3 5 3 2 2 2 1 2 2 1 2 2 3 2 2 2 3 3 2 2 2 1 3 2 5 2 2 2 5 2 1 2
#> [30673] 5 2 2 3 2 2 2 2 2 4 2 2 3 4 1 4 2 5 3 3 3 2 5 3 5 2 5 2 4 2 3 2 4 1 1 2
#> [30709] 1 2 3 2 5 1 3 2 2 3 1 5 2 5 3 2 2 1 3 1 2 2 2 3 3 2 4 3 2 3 5 5 2 3 2 5
#> [30745] 1 2 5 2 2 3 5 1 2 3 1 1 3 3 2 4 5 4 1 1 3 1 5 3 2 2 2 5 2 2 3 4 3 3 2 1
#> [30781] 3 2 4 5 1 2 2 3 2 2 2 3 2 1 5 2 2 5 2 4 5 2 1 2 2 2 3 3 4 3 2 3 3 1 2 5
#> [30817] 2 3 5 5 3 5 5 2 1 4 1 2 3 4 2 2 2 1 3 2 5 5 2 2 2 2 2 2 1 3 5 4 4 3 2 5
#> [30853] 1 2 2 1 3 2 3 1 2 4 2 5 3 5 5 3 3 2 3 2 3 2 1 2 2 3 2 3 4 5 3 2 2 3 1 2
#> [30889] 1 1 2 2 3 4 3 1 5 2 2 5 2 4 2 4 2 3 1 4 2 3 3 5 5 3 1 2 1 3 3 4 4 2 2 3
#> [30925] 2 1 3 5 5 3 3 4 2 2 2 1 5 3 1 2 3 2 5 5 3 3 3 4 1 3 1 2 4 4 2 2 5 1 5 5
#> [30961] 2 5 2 2 1 3 3 5 5 2 2 2 4 4 2 2 3 2 3 3 1 1 1 2 2 5 4 4 1 2 1 5 2 3 3 2
#> [30997] 3 4 2 2 4 3 2 4 1 2 4 2 3 1 3 3 2 2 2 3 4 4 2 2 3 5 5 5 5 2 2 2 2 2 1 5
#> [31033] 2 5 5 2 3 4 1 1 2 2 3 4 2 2 2 2 4 1 3 5 2 1 3 3 3 5 1 2 1 2 1 2 3 1 3 2
#> [31069] 3 2 3 3 2 2 2 5 2 2 4 2 2 3 3 2 1 2 4 4 2 2 3 1 1 3 5 2 2 2 3 2 2 2 5 5
#> [31105] 2 1 5 2 2 2 3 5 5 4 3 5 4 3 3 2 5 2 2 2 1 2 2 2 5 4 2 5 2 2 5 1 1 3 3 3
#> [31141] 3 1 4 2 4 4 5 4 1 2 4 3 3 2 1 2 5 5 5 5 1 2 2 2 3 2 2 3 1 2 2 2 2 5 2 5
#> [31177] 2 2 5 3 4 2 4 3 1 2 5 4 3 5 2 2 2 3 3 2 2 1 2 1 3 5 2 1 2 2 2 3 2 2 2 4
#> [31213] 2 4 2 3 2 2 5 2 4 2 1 1 4 2 1 1 2 2 2 5 1 4 5 5 5 1 3 2 5 5 5 2 3 4 1 2
#> [31249] 2 2 5 4 2 2 3 2 3 1 1 2 3 1 2 2 1 3 2 5 4 1 2 1 1 4 5 3 2 4 5 2 4 2 1 5
#> [31285] 3 1 2 2 3 2 2 1 2 5 2 2 2 2 1 3 2 4 3 3 5 1 4 3 2 2 1 5 2 3 3 5 3 5 4 1
#> [31321] 5 4 4 3 4 5 1 3 2 4 3 5 3 1 3 1 4 3 2 5 3 1 2 3 1 5 5 1 5 2 5 1 2 5 2 3
#> [31357] 2 3 5 2 2 2 3 1 3 5 2 2 4 2 1 5 1 1 5 1 5 3 3 5 3 5 4 1 2 4 2 2 5 5 2 2
#> [31393] 2 1 2 2 3 1 2 5 3 2 2 2 4 1 2 5 1 2 4 4 2 4 3 5 3 2 5 2 5 3 2 2 4 2 5 2
#> [31429] 2 2 1 2 5 2 5 3 5 1 5 2 2 3 1 3 3 3 2 3 2 3 2 2 1 5 3 1 4 1 2 2 2 1 2 2
#> [31465] 2 3 2 2 2 2 2 3 3 2 2 2 5 5 1 3 3 1 1 5 2 2 5 2 2 2 2 4 4 3 3 1 5 2 2 5
#> [31501] 2 3 2 3 3 1 5 4 3 1 3 3 3 3 3 5 2 4 3 5 5 3 2 3 2 4 3 4 1 5 3 2 2 2 2 3
#> [31537] 2 2 5 2 2 5 3 4 2 3 2 5 5 4 3 4 1 1 3 5 2 1 5 4 5 4 2 2 2 2 3 1 2 1 2 4
#> [31573] 2 2 1 2 3 1 1 5 5 3 3 1 5 5 4 5 4 2 1 5 4 3 4 1 5 5 2 3 4 4 3 5 4 5 2 3
#> [31609] 2 4 5 2 2 4 4 2 1 5 1 3 2 5 2 5 2 5 1 3 3 2 3 4 2 2 2 5 2 2 4 3 3 3 2 5
#> [31645] 2 2 1 2 3 5 2 5 2 2 5 4 5 5 2 4 2 2 2 1 3 1 4 2 2 3 5 5 5 4 1 1 5 2 3 1
#> [31681] 2 3 2 3 4 5 5 3 5 1 2 2 2 3 1 2 5 4 1 2 5 3 3 5 3 1 2 3 1 5 2 5 3 2 3 5
#> [31717] 4 5 4 2 2 1 1 4 4 3 4 3 5 2 2 3 5 4 2 1 3 5 2 4 4 3 4 2 3 3 5 3 2 2 2 3
#> [31753] 3 5 2 3 1 3 2 2 3 2 1 3 2 2 3 1 5 2 1 5 2 1 2 5 3 2 1 5 1 5 5 2 4 2 2 4
#> [31789] 1 2 2 3 5 2 3 3 3 2 4 2 1 5 4 3 2 2 1 3 3 4 1 4 3 5 3 2 3 3 3 4 4 5 4 5
#> [31825] 4 1 5 2 5 2 4 5 5 1 2 4 2 1 5 1 2 4 4 1 2 1 3 4 2 2 1 2 4 1 5 5 2 2 2 2
#> [31861] 2 2 5 4 3 5 3 2 2 5 3 2 2 1 1 2 3 3 3 3 3 3 2 5 2 1 3 3 3 1 2 3 3 5 1 4
#> [31897] 2 2 5 2 3 3 3 3 2 3 2 3 1 3 4 2 4 3 3 5 2 5 2 2 5 2 2 4 2 2 2 5 3 1 1 2
#> [31933] 2 3 3 5 5 5 5 1 4 2 3 2 5 3 1 2 2 2 2 2 1 3 2 1 1 2 4 1 2 2 2 4 4 2 3 5
#> [31969] 1 4 2 3 2 4 3 3 2 2 2 3 5 2 5 2 2 4 2 3 5 5 2 2 1 2 2 1 2 5 1 2 3 1 1 2
#> [32005] 5 2 2 4 3 3 2 3 2 3 1 5 2 4 4 2 5 5 2 3 2 1 1 1 5 3 2 1 2 2 2 2 1 1 2 2
#> [32041] 1 3 3 1 2 3 2 3 3 1 3 2 2 4 3 3 2 3 5 2 2 3 5 5 1 4 2 5 3 2 5 5 1 4 5 1
#> [32077] 3 1 2 5 3 2 2 4 5 2 1 4 2 1 2 1 5 2 2 3 2 2 2 4 2 3 1 2 2 1 1 3 4 5 2 2
#> [32113] 5 5 4 3 1 5 1 1 2 3 1 2 2 2 4 3 2 2 2 4 4 3 5 2 3 3 3 2 2 2 3 1 2 2 3 3
#> [32149] 4 3 2 3 2 2 5 1 3 3 1 2 2 1 2 2 5 5 3 1 2 3 1 1 5 3 2 3 1 2 2 5 2 2 2 5
#> [32185] 3 2 1 2 4 2 2 1 5 3 2 4 2 2 4 4 2 4 2 3 2 4 1 2 3 5 1 2 2 2 2 2 2 4 1 4
#> [32221] 4 1 2 4 5 2 1 3 2 1 4 5 4 3 5 2 1 5 5 4 2 3 2 3 3 2 5 5 1 5 3 3 2 5 4 5
#> [32257] 3 3 1 3 2 1 2 5 2 3 3 5 2 3 4 2 2 2 2 2 2 5 4 3 2 2 1 2 1 2 3 5 2 3 3 3
#> [32293] 2 2 3 3 1 3 2 1 2 2 5 2 4 5 5 2 2 4 2 1 4 2 3 2 2 5 2 2 2 4 2 3 2 4 2 5
#> [32329] 3 3 2 5 3 4 2 2 1 2 3 2 3 4 2 1 3 4 2 5 3 2 1 5 2 2 2 1 2 3 3 3 5 1 3 1
#> [32365] 2 3 5 1 5 3 2 1 5 2 5 2 3 1 5 5 2 2 2 3 1 2 5 4 2 2 3 2 1 2 1 2 2 1 3 2
#> [32401] 2 4 3 5 2 1 5 5 4 4 1 5 4 2 3 4 5 2 2 2 2 1 5 5 4 1 1 2 4 2 3 3 3 1 5 4
#> [32437] 5 5 1 2 2 4 3 3 5 2 2 4 2 5 5 2 5 2 5 1 5 2 5 2 2 5 5 5 4 5 3 2 2 2 1 3
#> [32473] 4 3 2 2 2 1 5 5 2 5 2 3 5 2 5 5 3 5 3 5 2 4 3 2 4 2 2 1 3 2 3 4 5 5 2 2
#> [32509] 2 3 3 3 2 4 4 2 2 1 2 3 5 4 2 1 2 1 2 2 5 2 2 5 5 4 3 1 1 5 2 2 2 2 1 2
#> [32545] 5 3 5 3 2 5 2 3 1 5 2 2 1 2 2 5 2 5 3 2 2 3 3 5 1 4 2 1 2 4 2 1 2 5 4 5
#> [32581] 1 2 2 2 2 3 4 2 2 4 4 2 2 1 3 1 4 3 5 1 2 3 3 5 2 2 5 2 3 4 3 1 5 4 1 2
#> [32617] 4 2 1 2 2 2 2 1 2 2 2 2 5 1 4 3 3 1 4 4 2 3 1 2 2 2 4 2 5 3 1 1 2 2 5 2
#> [32653] 3 2 5 2 5 2 2 2 1 5 5 2 2 2 1 3 4 2 2 5 3 5 3 3 3 2 5 3 2 2 3 3 2 5 3 5
#> [32689] 2 4 5 1 1 1 1 2 5 2 2 3 2 4 2 2 4 3 3 4 2 4 2 5 3 2 2 5 5 1 1 1 5 3 2 2
#> [32725] 3 2 5 3 5 5 1 2 2 2 2 5 3 2 3 3 2 2 2 2 3 2 2 4 3 2 5 2 1 2 3 1 3 4 1 3
#> [32761] 2 1 2 2 2 5 2 2 3 2 3 1 2 1 3 4 2 3 5 5 1 1 2 3 2 1 3 5 1 5 3 2 1 2 2 3
#> [32797] 3 5 3 1 2 2 3 2 1 1 3 3 2 3 5 2 2 2 2 3 1 5 3 5 2 2 5 2 5 3 2 3 2 2 2 1
#> [32833] 5 1 2 4 2 1 2 5 2 2 2 4 5 1 2 2 1 4 2 2 2 2 2 5 3 2 5 4 3 1 2 2 2 4 2 2
#> [32869] 5 2 2 1 2 5 1 3 2 2 3 3 1 1 3 3 5 2 3 3 5 2 4 5 3 3 5 5 1 2 3 4 2 4 4 5
#> [32905] 4 3 1 2 5 1 2 3 2 2 1 2 2 3 2 2 2 3 4 2 2 3 1 2 5 2 5 5 2 2 3 5 3 2 3 4
#> [32941] 2 3 1 3 2 3 2 2 2 4 2 1 3 5 1 4 2 2 1 5 2 4 2 4 2 3 2 3 2 3 3 2 2 2 2 3
#> [32977] 2 2 2 2 4 1 1 5 1 2 3 2 3 5 5 2 2 3 1 1 2 2 2 5 2 3 2 3 2 2 2 3 3 2 3 3
#> [33013] 5 2 3 5 2 3 5 3 3 4 4 2 2 5 1 2 4 3 5 2 1 5 3 2 5 4 4 2 2 5 4 3 4 4 3 1
#> [33049] 2 2 5 1 1 4 1 2 2 5 4 5 3 2 1 4 3 5 3 1 4 2 5 5 2 4 4 3 2 5 1 3 2 2 3 5
#> [33085] 4 3 2 4 2 1 2 1 2 4 1 2 3 2 3 2 3 2 3 2 2 5 1 3 5 2 3 2 2 2 2 2 2 4 5 4
#> [33121] 2 2 2 2 3 5 3 1 3 5 4 4 3 4 3 2 3 2 4 2 5 2 2 2 1 5 2 3 4 5 3 2 4 4 3 2
#> [33157] 2 2 4 2 2 4 3 2 1 3 5 4 5 2 2 2 5 5 4 2 3 5 2 4 1 3 5 3 3 1 5 5 3 3 2 2
#> [33193] 5 5 1 4 2 5 2 3 5 5 3 2 2 5 1 1 2 5 4 1 3 1 4 2 3 4 5 2 2 3 2 2 5 3 2 2
#> [33229] 5 2 1 5 1 2 3 3 4 5 3 2 5 2 3 2 1 2 4 5 1 4 2 2 3 1 2 3 1 4 3 3 4 2 2 5
#> [33265] 2 2 2 1 5 3 2 3 4 2 2 3 3 5 1 2 2 3 1 2 2 3 1 2 3 2 5 3 1 2 2 2 2 3 3 2
#> [33301] 3 5 2 4 2 4 5 3 2 2 3 2 4 3 4 2 5 5 2 3 3 4 1 2 5 1 2 2 2 5 2 3 2 4 2 5
#> [33337] 2 1 3 2 5 2 2 2 2 2 2 2 2 1 3 3 5 3 2 2 5 2 2 2 1 5 1 2 5 1 2 1 3 4 4 2
#> [33373] 1 4 5 2 1 5 3 2 1 4 3 3 4 2 5 2 4 3 3 2 2 2 5 4 5 4 2 1 4 2 5 3 2 2 3 2
#> [33409] 3 2 4 5 3 2 3 3 3 2 5 4 2 2 5 2 5 5 2 1 2 1 4 2 5 2 3 2 2 3 3 2 4 2 3 3
#> [33445] 2 3 2 1 1 3 1 1 2 3 5 3 3 5 4 3 2 1 5 1 5 4 3 2 1 2 5 3 3 1 2 2 1 3 1 1
#> [33481] 3 2 2 4 5 3 3 2 4 5 2 5 2 2 2 3 1 3 4 4 3 2 5 3 2 3 3 1 5 2 2 1 2 2 4 2
#> [33517] 1 1 2 5 4 3 2 4 5 2 2 3 3 3 2 5 4 2 4 4 5 1 4 2 4 2 1 2 2 3 1 3 2 5 2 2
#> [33553] 1 2 2 4 2 5 2 3 2 2 2 5 1 2 4 2 3 2 2 5 3 5 5 5 3 2 4 2 3 3 2 2 2 2 2 1
#> [33589] 1 2 2 2 2 3 3 2 5 2 2 3 2 1 2 2 2 1 2 1 2 5 2 5 3 5 1 5 2 4 3 4 3 4 2 3
#> [33625] 2 5 2 2 5 1 2 2 2 5 2 4 1 4 3 4 2 5 2 2 2 5 5 5 2 3 2 5 2 5 5 4 1 4 4 4
#> [33661] 1 5 4 3 2 1 5 4 4 3 5 2 3 5 4 2 2 1 4 5 2 5 3 4 1 2 2 2 3 2 5 4 5 2 2 3
#> [33697] 2 3 2 3 1 4 1 2 5 5 2 2 2 1 2 3 2 3 1 5 1 5 5 4 2 3 2 2 5 2 3 5 3 4 2 2
#> [33733] 1 2 3 5 3 1 3 2 3 2 1 5 1 3 2 4 3 3 3 5 1 3 1 2 1 2 5 1 3 3 2 2 2 2 4 2
#> [33769] 2 2 2 2 5 2 3 5 3 1 2 1 2 3 2 3 2 1 2 2 5 2 3 2 2 4 2 2 5 3 4 5 5 2 4 2
#> [33805] 5 3 2 3 5 1 4 3 2 4 3 3 4 2 5 2 2 1 2 2 3 1 5 2 2 3 3 3 1 3 2 2 4 2 2 2
#> [33841] 1 3 4 1 3 1 2 2 2 2 2 5 5 3 2 5 4 5 1 1 1 1 2 3 2 2 2 2 5 4 4 2 3 5 5 3
#> [33877] 3 3 2 2 2 2 1 2 4 3 5 5 4 5 2 5 2 3 2 5 2 5 1 2 4 2 2 2 5 2 2 4 4 1 1 2
#> [33913] 1 5 2 5 5 3 2 5 3 5 5 1 3 5 5 2 3 2 2 5 5 5 2 2 1 2 1 2 2 5 2 1 2 2 5 2
#> [33949] 3 5 3 2 2 2 5 3 2 2 2 1 3 2 2 2 3 4 3 2 2 4 2 2 4 3 3 2 2 3 3 3 2 5 5 2
#> [33985] 5 4 5 1 2 5 2 2 3 2 1 1 3 2 2 5 1 4 5 4 5 2 2 4 2 1 1 2 5 2 2 2 2 5 2 4
#> [34021] 1 2 2 1 5 2 5 2 2 4 5 3 2 1 4 1 2 2 1 1 2 5 5 2 2 3 2 2 2 1 2 3 5 1 2 2
#> [34057] 3 2 2 2 4 2 2 2 3 2 3 2 1 2 4 4 4 3 4 5 3 4 4 5 1 1 2 5 5 5 5 2 3 1 5 2
#> [34093] 3 1 2 2 1 5 2 4 1 2 2 2 2 2 2 1 1 5 2 2 4 1 2 2 4 5 1 2 2 5 2 5 2 2 2 2
#> [34129] 3 3 1 3 2 4 3 2 2 2 1 5 4 2 2 3 2 2 1 2 5 2 3 3 2 2 2 2 3 2 5 2 5 4 2 2
#> [34165] 2 3 2 1 5 5 5 2 2 5 2 1 5 4 4 2 2 2 2 3 2 5 2 4 2 2 3 2 2 2 2 2 2 5 2 2
#> [34201] 2 3 3 5 1 2 2 1 2 3 2 2 2 4 1 5 1 3 3 5 2 2 2 2 3 2 1 4 2 2 2 2 5 2 4 2
#> [34237] 3 3 2 4 2 1 2 5 3 1 4 4 2 5 5 2 4 3 4 2 5 1 3 3 2 2 2 3 4 1 2 2 5 5 4 5
#> [34273] 3 2 2 2 4 5 3 4 2 2 4 3 2 2 1 2 1 2 3 4 2 2 5 5 5 5 2 4 2 2 2 2 4 5 3 5
#> [34309] 1 2 5 3 4 5 1 2 4 5 2 2 2 2 3 1 2 2 1 2 5 2 3 1 3 3 3 4 3 5 2 4 5 3 5 5
#> [34345] 2 3 2 4 4 5 5 5 3 3 2 3 3 2 3 1 3 2 2 5 2 2 4 3 2 1 4 1 5 3 2 4 3 3 3 4
#> [34381] 3 3 5 1 3 2 2 2 2 2 1 2 1 1 4 2 3 3 1 5 3 1 5 5 4 2 3 1 3 1 2 4 1 1 3 3
#> [34417] 3 2 2 3 4 2 2 1 2 4 1 2 4 2 2 2 2 2 2 5 1 2 3 1 2 3 1 5 2 4 2 3 2 4 2 3
#> [34453] 2 2 4 2 2 3 2 2 2 4 3 4 5 2 3 2 1 3 4 3 1 2 5 3 4 3 3 5 2 3 3 2 3 4 5 3
#> [34489] 5 2 1 1 5 2 3 2 4 1 5 2 5 1 2 5 3 4 1 4 3 3 3 5 2 1 2 1 2 2 2 1 2 2 5 5
#> [34525] 1 3 1 5 2 1 3 5 4 4 3 2 2 4 4 2 4 2 2 2 5 2 2 2 1 2 2 2 3 2 5 2 2 2 1 5
#> [34561] 4 2 3 4 5 4 2 1 3 2 3 2 2 1 2 5 2 4 2 1 3 5 3 1 2 1 2 5 2 1 1 3 2 1 4 1
#> [34597] 2 2 5 1 3 5 3 2 5 2 1 2 5 2 2 4 5 3 2 3 1 5 4 2 3 2 4 2 2 2 2 2 2 2 1 4
#> [34633] 1 5 5 2 5 2 1 4 4 4 2 2 1 1 1 5 2 3 1 5 5 2 3 2 5 2 3 2 3 5 5 2 4 3 2 2
#> [34669] 1 2 3 1 1 5 2 2 3 2 4 1 2 2 5 2 3 4 2 4 5 2 2 2 2 1 2 3 1 3 2 2 1 2 4 3
#> [34705] 4 3 1 5 4 1 3 1 2 2 3 1 3 5 1 3 2 2 1 5 1 5 4 1 1 3 2 2 5 5 2 4 5 4 2 2
#> [34741] 2 3 2 2 1 2 2 5 5 3 1 2 4 5 1 3 3 4 2 5 2 5 4 1 5 2 2 5 2 4 2 4 5 2 2 3
#> [34777] 2 5 5 1 2 1 2 1 4 1 2 2 1 4 2 3 5 4 3 3 1 2 3 2 4 2 3 2 5 5 5 3 2 5 3 2
#> [34813] 2 3 3 5 5 4 2 1 3 1 4 3 3 2 3 1 2 2 1 2 2 4 1 3 5 3 3 3 5 2 4 4 2 4 2 2
#> [34849] 4 2 5 2 3 2 5 2 2 3 3 2 2 5 4 4 5 2 5 1 5 5 4 2 2 1 5 1 5 3 2 1 1 3 2 2
#> [34885] 4 4 3 4 2 3 3 1 2 1 2 4 5 5 2 3 2 2 3 4 2 2 2 1 1 3 3 5 2 4 3 2 2 3 2 2
#> [34921] 3 5 4 3 1 5 2 2 2 2 4 5 1 2 5 3 2 2 2 4 2 3 2 5 2 3 2 1 4 2 3 4 3 2 3 4
#> [34957] 4 2 3 1 5 2 2 1 1 2 3 2 3 3 3 3 3 2 3 1 3 3 2 2 1 5 5 5 3 4 2 4 3 3 5 2
#> [34993] 2 2 2 3 3 4 2 2 1 2 5 5 3 5 2 2 4 4 1 5 4 3 3 3 3 2 2 2 2 2 4 4 2 1 2 3
#> [35029] 2 1 2 2 2 5 4 2 5 5 3 4 5 2 5 3 1 2 5 2 3 3 2 4 4 2 3 3 3 2 2 5 3 4 2 4
#> [35065] 2 2 1 2 1 2 5 1 2 5 5 2 2 5 3 5 2 5 2 5 3 5 3 1 1 2 2 1 2 3 3 3 2 5 3 4
#> [35101] 2 2 3 4 2 3 3 2 1 2 4 5 4 3 2 3 3 2 5 2 3 1 3 2 4 1 4 2 2 2 3 2 3 2 1 3
#> [35137] 5 2 3 1 3 2 2 2 3 3 4 3 1 3 2 2 2 1 3 3 2 2 3 3 3 3 2 5 1 3 1 5 5 2 5 3
#> [35173] 4 4 4 2 2 2 1 5 5 3 1 2 5 3 5 3 5 3 5 5 2 2 4 4 5 1 1 4 4 5 5 3 3 3 3 2
#> [35209] 2 2 4 3 5 2 3 2 3 4 2 1 3 3 2 5 2 2 2 2 3 3 5 2 2 2 4 5 3 3 5 2 3 2 3 2
#> [35245] 2 2 3 3 2 5 2 3 2 4 1 3 2 2 3 2 3 2 5 2 4 2 2 4 5 2 2 2 2 4 3 3 2 2 2 3
#> [35281] 5 2 4 5 2 2 2 1 2 3 3 5 1 2 1 2 3 1 2 1 3 4 5 1 4 2 2 3 3 5 2 3 1 2 2 2
#> [35317] 2 2 3 1 2 3 1 1 5 3 2 4 1 2 2 1 3 5 2 2 3 4 2 3 4 5 2 5 3 5 4 3 4 4 5 5
#> [35353] 5 3 2 2 1 2 4 3 3 2 5 5 1 2 2 4 5 5 1 4 5 4 2 2 5 1 3 2 3 3 5 3 1 5 5 5
#> [35389] 2 3 1 3 2 2 1 5 1 1 5 2 2 2 4 4 5 3 2 2 4 2 2 3 2 2 2 5 3 2 2 3 3 4 1 2
#> [35425] 5 2 2 4 2 5 2 1 2 5 3 1 2 2 5 4 5 2 3 1 3 3 3 2 1 3 2 5 5 5 1 2 2 2 2 3
#> [35461] 2 2 2 2 2 5 3 2 3 2 3 2 1 3 1 4 2 2 2 3 2 3 2 2 2 2 2 2 2 2 3 5 5 1 5 2
#> [35497] 4 2 5 2 4 2 2 5 4 3 3 3 2 3 1 1 2 2 5 3 2 4 1 4 2 2 3 5 2 2 2 2 2 2 2 2
#> [35533] 2 1 5 2 3 2 2 5 3 1 2 2 1 4 5 1 3 4 2 1 2 2 2 3 3 3 2 2 3 2 4 1 2 4 2 1
#> [35569] 1 2 3 2 4 2 2 3 2 3 3 2 2 2 1 5 3 5 4 5 5 1 2 2 1 5 4 2 4 3 4 5 2 2 2 2
#> [35605] 4 2 2 3 2 5 5 5 2 2 2 1 5 5 2 2 3 3 2 5 4 2 5 1 1 2 2 2 2 2 3 1 4 5 5 2
#> [35641] 2 2 2 3 5 5 1 1 3 4 5 3 3 3 2 3 2 3 3 2 1 1 1 2 2 5 3 2 3 2 4 1 1 1 2 2
#> [35677] 3 2 2 2 2 5 3 2 3 4 2 5 5 4 4 2 1 3 2 3 3 5 1 3 3 2 2 3 5 3 3 5 2 3 2 2
#> [35713] 4 3 2 5 3 5 2 3 2 3 5 4 5 3 3 2 2 2 2 1 2 5 1 5 5 5 2 2 3 1 2 2 2 4 2 1
#> [35749] 1 2 2 2 5 5 5 4 5 1 2 1 3 1 2 1 5 3 2 1 3 2 2 3 2 2 2 2 1 5 1 4 2 3 1 5
#> [35785] 5 4 2 2 2 5 2 1 2 5 3 3 4 4 2 3 2 4 2 2 4 2 1 1 3 2 2 4 2 1 1 5 3 3 2 4
#> [35821] 5 2 5 1 2 4 2 3 5 2 2 1 3 2 2 5 3 2 5 3 3 2 3 5 2 1 3 4 2 4 3 3 2 3 2 4
#> [35857] 1 5 2 2 2 2 1 3 4 2 1 2 2 2 5 4 1 2 5 5 2 4 2 5 4 2 3 4 2 2 2 5 3 5 1 1
#> [35893] 2 2 3 4 2 1 1 5 1 4 2 3 3 3 2 3 5 1 3 3 1 3 2 2 2 4 1 3 4 4 4 5 5 3 5 2
#> [35929] 3 3 1 3 5 2 2 5 3 2 3 2 2 2 3 5 1 2 4 1 1 2 2 5 2 2 3 2 3 5 1 2 3 2 1 4
#> [35965] 5 4 3 1 4 2 5 2 2 2 3 5 1 2 4 2 1 1 2 5 2 2 3 1 2 2 4 3 2 3 2 2 2 2 2 2
#> [36001] 3 2 2 2 1 3 3 5 2 3 4 4 1 2 3 1 3 2 3 2 1 1 5 3 2 5 2 1 3 5 5 5 5 2 2 3
#> [36037] 3 2 2 1 4 5 2 3 5 3 1 1 1 1 2 5 4 4 4 2 5 2 1 3 2 2 2 3 2 3 3 3 2 2 1 2
#> [36073] 2 2 3 2 2 2 2 1 4 2 1 2 2 3 1 2 5 2 1 2 2 2 3 2 2 5 2 2 3 1 5 5 2 3 2 2
#> [36109] 1 2 1 2 2 2 2 2 4 3 5 5 1 1 1 3 2 1 1 2 2 2 2 4 5 2 3 3 2 4 4 3 4 5 3 5
#> [36145] 3 2 2 2 2 3 2 2 2 5 1 3 5 2 3 3 2 3 2 2 3 2 3 2 2 4 5 2 5 2 2 2 3 2 3 3
#> [36181] 2 2 2 4 2 2 2 2 2 5 2 5 5 2 4 1 1 2 2 2 1 1 2 1 3 2 4 3 2 2 3 2 2 1 2 3
#> [36217] 3 3 5 1 2 2 4 1 2 2 3 2 2 4 5 5 2 3 2 3 2 2 2 3 4 5 2 4 2 2 1 5 2 2 2 2
#> [36253] 5 1 5 2 1 3 5 4 4 5 3 5 5 1 2 4 5 2 5 3 4 2 2 2 2 4 1 2 2 2 4 5 5 1 3 4
#> [36289] 2 2 2 3 2 2 5 1 3 2 1 1 1 4 2 5 2 1 1 2 2 2 2 2 5 3 2 5 5 4 3 1 2 2 5 2
#> [36325] 5 2 1 4 4 3 1 2 4 2 3 5 4 4 2 5 2 2 3 3 1 2 3 2 2 2 2 4 2 3 4 4 2 1 2 1
#> [36361] 3 5 5 2 2 5 5 2 1 1 2 2 2 5 4 5 5 2 2 3 2 1 4 5 2 2 4 3 4 2 3 2 2 4 2 2
#> [36397] 1 5 5 2 2 3 2 3 1 2 2 2 5 2 2 2 4 2 2 2 2 2 3 2 3 1 3 5 5 1 1 1 2 2 4 5
#> [36433] 2 1 3 3 1 4 3 5 2 2 2 2 1 1 3 2 3 2 2 2 5 2 3 5 2 1 2 4 3 2 5 2 3 4 2 3
#> [36469] 1 1 2 4 4 2 5 3 2 1 5 4 1 2 4 1 3 3 1 2 2 3 2 2 1 5 2 4 2 5 2 2 1 2 2 2
#> [36505] 3 3 5 1 1 1 1 5 1 3 2 5 3 2 5 3 1 4 2 2 3 2 3 4 5 5 1 2 5 3 4 2 2 3 2 1
#> [36541] 1 1 3 1 4 3 5 2 3 3 2 2 5 2 3 2 2 3 2 3 2 1 2 3 2 2 1 3 3 5 4 1 4 2 1 4
#> [36577] 1 5 5 5 1 2 2 5 2 2 2 2 3 5 3 2 2 2 2 2 3 3 3 1 3 2 3 5 1 3 5 2 3 5 2 1
#> [36613] 3 3 2 2 3 5 2 2 5 3 3 3 2 2 3 3 5 3 2 1 2 2 4 3 5 2 5 2 2 1 3 4 1 5 1 3
#> [36649] 1 2 4 4 1 3 2 2 4 5 2 5 2 2 2 3 4 4 2 3 2 2 2 5 2 2 3 1 3 2 1 5 4 5 2 1
#> [36685] 4 2 3 2 4 1 2 2 5 4 1 3 2 4 5 1 2 3 2 1 2 3 2 1 3 5 2 2 3 5 4 3 1 5 2 5
#> [36721] 2 2 3 1 3 2 3 1 2 4 2 2 5 3 1 1 5 4 4 5 5 3 3 5 3 5 3 3 3 2 2 5 2 2 2 2
#> [36757] 2 2 5 4 5 2 2 4 2 1 5 1 2 2 2 4 2 2 5 2 2 3 2 5 3 5 3 2 4 1 3 2 2 5 1 3
#> [36793] 1 4 2 5 3 2 1 4 2 3 4 4 1 5 2 1 4 1 4 2 2 2 5 5 2 4 2 1 1 2 4 3 4 2 1 2
#> [36829] 2 4 2 5 3 4 2 2 2 1 2 2 2 2 3 1 2 5 1 5 4 3 2 3 5 2 2 2 4 3 2 1 5 4 4 1
#> [36865] 3 2 3 5 2 3 2 2 2 5 5 2 3 1 2 2 2 3 2 2 3 2 2 2 2 1 2 2 2 5 1 3 4 3 2 3
#> [36901] 2 2 1 2 2 2 2 2 2 3 5 2 2 1 2 5 3 2 4 3 2 3 1 2 3 2 4 4 5 2 1 1 3 3 3 3
#> [36937] 4 5 1 2 2 5 3 2 1 5 2 4 1 1 1 4 3 2 5 2 4 4 5 3 2 5 3 2 1 3 4 2 2 5 2 3
#> [36973] 1 2 1 3 5 1 2 3 2 4 4 2 2 3 3 5 1 1 2 2 3 1 2 2 3 5 5 4 1 4 5 1 5 2 3 1
#> [37009] 4 1 3 5 4 1 1 4 2 3 4 2 4 4 4 4 2 2 1 2 1 1 4 1 3 4 2 5 2 2 5 3 2 3 5 4
#> [37045] 2 2 4 3 2 5 3 1 3 1 3 3 2 2 4 5 3 3 2 5 2 2 2 5 2 2 2 4 3 3 5 1 1 2 1 2
#> [37081] 1 2 1 5 1 2 3 3 1 4 5 4 3 3 1 1 3 4 4 3 4 3 5 2 5 3 2 2 2 3 3 5 2 5 2 2
#> [37117] 2 2 1 4 2 2 2 3 4 2 5 4 2 2 5 2 2 3 5 2 3 2 3 2 5 2 3 2 3 2 3 3 2 3 1 3
#> [37153] 3 5 1 3 4 2 5 4 4 4 1 4 3 2 1 2 1 3 2 3 5 1 4 4 1 3 2 1 2 3 2 3 5 1 5 3
#> [37189] 2 4 2 4 3 4 2 2 2 2 2 3 4 3 5 3 3 1 2 2 3 5 1 2 1 4 2 3 2 2 3 5 4 2 5 3
#> [37225] 2 5 4 2 5 2 4 3 5 2 2 2 2 1 3 5 5 2 1 2 2 2 5 3 4 3 2 2 1 5 4 2 2 2 5 2
#> [37261] 2 4 3 2 3 4 2 4 5 2 4 2 3 4 1 2 2 3 1 1 1 5 4 3 2 3 2 4 4 1 1 5 5 4 5 1
#> [37297] 4 2 1 2 2 3 1 5 3 3 5 4 3 2 3 3 2 4 3 5 4 4 4 1 3 2 2 1 5 1 5 3 1 2 2 2
#> [37333] 2 1 3 2 5 2 3 4 3 2 4 2 2 2 5 3 5 2 1 2 3 2 1 3 3 4 2 2 2 2 2 2 3 2 5 5
#> [37369] 4 2 2 2 3 3 3 2 2 4 3 2 3 2 1 1 1 2 3 3 2 2 2 5 2 2 4 5 3 4 2 2 2 1 2 3
#> [37405] 3 2 4 1 3 1 2 5 2 2 4 2 2 4 4 3 5 2 3 5 2 2 2 5 1 4 3 5 2 1 1 2 1 2 2 2
#> [37441] 2 2 5 4 3 1 4 4 2 1 3 1 3 2 3 1 2 3 1 4 5 2 1 3 2 4 3 2 2 4 3 5 3 2 4 5
#> [37477] 2 3 2 3 2 3 3 2 2 2 2 5 3 2 1 1 2 3 4 2 5 3 2 4 2 2 5 3 2 3 2 5 1 2 2 2
#> [37513] 1 3 4 4 2 3 4 2 2 3 5 5 5 2 2 2 2 5 3 2 4 1 2 3 2 3 3 3 2 2 1 2 5 2 2 2
#> [37549] 4 2 5 1 3 3 2 2 4 2 2 2 5 2 2 4 3 2 3 2 2 2 5 3 4 2 3 2 5 4 5 2 2 2 5 3
#> [37585] 3 3 2 3 2 2 2 2 5 2 2 3 4 3 4 2 2 1 3 1 1 4 4 1 2 2 3 2 4 2 2 2 5 4 2 1
#> [37621] 1 2 2 3 2 2 1 3 2 3 5 1 1 3 1 2 5 2 5 3 3 2 4 2 2 3 5 2 2 5 2 5 2 1 4 2
#> [37657] 5 2 4 2 1 4 5 2 3 1 2 2 3 3 2 1 1 3 3 5 2 2 2 5 1 2 3 2 1 1 2 2 4 1 2 3
#> [37693] 2 1 2 5 3 2 5 2 4 3 1 1 4 5 2 2 5 1 2 4 4 2 2 2 3 5 3 2 2 2 1 3 2 2 5 2
#> [37729] 3 2 5 4 5 5 3 2 1 2 2 3 4 3 5 5 4 2 2 2 2 2 4 3 5 4 4 5 4 4 2 3 5 5 2 2
#> [37765] 1 3 2 1 2 2 3 2 1 5 3 2 3 2 2 5 2 4 2 1 1 4 2 4 5 3 4 5 2 2 1 3 3 3 4 3
#> [37801] 2 3 5 4 4 4 4 5 5 2 1 4 1 1 3 2 2 2 4 3 2 2 3 5 5 5 2 2 5 2 5 4 2 2 5 2
#> [37837] 3 3 3 2 1 1 5 5 3 4 2 2 1 5 2 4 2 4 2 5 3 3 2 5 5 4 1 2 2 2 2 5 3 3 5 2
#> [37873] 4 2 4 2 1 2 1 2 5 5 2 1 3 4 1 2 3 4 2 5 2 4 1 1 2 2 5 3 3 2 5 3 2 3 1 3
#> [37909] 2 1 4 4 3 3 3 2 2 2 2 3 2 1 2 2 2 4 1 3 3 3 2 3 1 2 2 2 1 1 2 5 2 4 5 2
#> [37945] 2 4 3 5 2 3 2 3 3 2 2 2 2 4 2 2 3 3 2 1 1 3 2 4 3 5 3 3 5 2 1 2 2 2 3 2
#> [37981] 1 2 3 5 5 2 2 3 5 2 3 1 1 3 2 2 2 3 1 2 2 1 2 5 5 2 2 5 1 5 2 2 1 2 2 1
#> [38017] 4 4 1 2 3 3 2 5 1 1 3 2 1 5 2 3 1 2 3 4 2 1 3 2 1 1 5 3 5 3 3 5 4 2 3 5
#> [38053] 4 4 1 3 2 5 4 3 3 3 3 2 2 2 5 2 3 1 3 1 3 2 3 2 3 1 2 2 2 2 5 2 2 5 5 2
#> [38089] 3 5 4 4 4 4 5 2 1 2 3 2 2 4 3 2 1 1 1 1 2 3 3 2 3 3 5 5 2 2 1 5 3 2 2 5
#> [38125] 5 3 2 1 1 2 2 1 5 5 5 3 5 2 2 2 2 2 2 2 5 4 2 5 2 5 2 4 1 3 1 3 4 2 2 5
#> [38161] 1 1 4 5 2 5 5 2 3 3 5 2 5 5 3 2 5 4 2 3 3 2 1 4 1 1 5 5 3 5 2 3 2 2 1 2
#> [38197] 4 3 3 1 1 3 4 4 2 2 5 2 4 2 3 2 2 2 4 2 2 5
#> 
#> Within cluster sum of squares by cluster:
#> [1]  61973.94 110615.23  82522.73  74106.14  30632.03
#>  (between_SS / total_SS =  47.7 %)
#> 
#> Available components:
#> 
#> [1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss"
#> [6] "betweenss"    "size"         "iter"         "ifault"

proc.kmeans.results$kmeans_model(5)
#> K-means clustering with 5 clusters of sizes 7926, 5220, 14430, 4366, 6276
#> 
#> Cluster means:
#>        BPXDI3      BPXSY3      BPXDI2      BPXSY2      BPXDI1      BPXSY1
#> 1  0.46188807  0.20536309  0.46921717  0.20002435  0.48104800  0.19216582
#> 2 -1.19959080 -0.97977434 -1.23154632 -0.99348269 -1.22795122 -0.99800508
#> 3 -0.03958390 -0.32250547 -0.04782192 -0.32172411 -0.06026541 -0.31243106
#> 4  0.74504593  1.89305052  0.79686121  1.91325640  0.82269579  1.91464700
#> 5 -0.01286421 -0.01985189 -0.01264647 -0.01756086 -0.01993961 -0.02620911
#>        BMXLEG      BPXML1      BPXPLS   PEASCTM1    BMXWAIST      BMXBMI
#> 1  0.39808341  0.14019410  0.01764375  0.4189000  1.16793701  1.20993770
#> 2 -0.83984222 -0.92116389  0.56677239  0.1972831 -0.70049693 -0.69730563
#> 3  0.17158591 -0.27066267 -0.11199121  0.1851560 -0.02345797 -0.09234715
#> 4 -0.19299637  1.78090194 -0.36014814  0.5604144  0.55219747  0.36891860
#> 5 -0.06446706 -0.02747904  0.01434730 -1.5086982 -1.22257336 -0.99237732
#>        BMXHT    BMXARMC    BMXARML Poverty_Income_Ratio      BMXWT         Age
#> 1  0.6680187  1.1557629  0.7646280           0.20186905  1.2061885  0.53995774
#> 2 -0.2960422 -0.6052468 -0.2739096          -0.18484863 -0.6002403 -0.68944986
#> 3  0.3686741  0.1110423  0.3339697           0.04915597  0.0910803  0.05724003
#> 4  0.3848402  0.4143226  0.4972752           0.06229332  0.4211034  1.31828346
#> 5 -1.7128036 -1.4997549 -1.8516444          -0.25755218 -1.5264217 -1.15716635
#> 
#> Clustering vector:
#>     [1] 3 3 3 1 1 5 1 4 3 3 4 1 3 3 5 1 4 2 3 3 1 3 1 3 3 4 3 2 4 4 4 3 5 3 5 3
#>    [37] 3 1 5 2 4 5 1 1 4 2 3 3 2 5 3 5 5 3 4 4 1 1 3 1 2 5 3 5 1 1 3 4 2 3 2 1
#>    [73] 4 3 4 3 4 2 1 3 5 2 2 2 1 3 3 5 3 4 4 3 5 3 3 5 4 3 2 2 3 3 3 1 3 2 3 3
#>   [109] 1 1 5 2 5 3 3 3 3 2 3 5 3 3 3 3 4 1 2 2 1 4 3 1 3 2 2 2 3 2 2 4 5 1 3 2
#>   [145] 1 4 3 4 5 1 4 4 1 5 2 2 3 5 5 1 2 4 3 3 2 1 5 3 3 3 5 4 3 1 4 5 5 1 5 3
#>   [181] 3 5 5 3 3 5 1 4 1 2 5 5 3 5 3 1 3 5 3 2 2 3 3 1 5 1 1 2 4 3 3 1 1 3 1 1
#>   [217] 3 3 1 5 3 4 3 3 4 2 2 4 2 5 3 4 1 1 5 3 3 1 4 5 5 1 5 3 2 5 4 5 3 5 3 2
#>   [253] 1 5 3 1 3 4 4 3 3 3 1 5 3 2 1 3 2 1 4 3 3 2 4 3 3 3 4 3 5 3 5 2 1 2 5 5
#>   [289] 3 5 3 3 1 2 2 1 5 3 1 4 3 2 2 3 5 4 3 4 1 2 3 3 3 3 5 3 3 1 5 3 1 4 5 2
#>   [325] 4 5 5 5 1 1 3 2 3 1 2 3 3 1 5 5 5 3 3 4 3 3 4 1 5 1 4 1 3 5 1 3 4 3 5 3
#>   [361] 3 1 2 4 5 3 3 2 3 4 5 3 3 3 1 1 1 1 5 4 3 1 1 1 3 3 4 2 3 3 3 1 4 3 5 3
#>   [397] 4 4 2 2 3 1 4 1 1 3 5 4 4 4 3 1 3 1 3 5 2 4 3 5 5 5 5 4 5 5 5 5 2 3 3 5
#>   [433] 2 3 3 4 3 4 5 5 3 5 3 1 4 3 4 3 1 1 1 5 2 2 5 5 1 1 2 3 1 3 5 4 3 5 2 2
#>   [469] 5 3 3 2 3 4 4 4 1 5 4 3 3 4 3 3 5 3 2 5 2 5 2 3 4 1 1 3 2 1 5 1 5 3 5 3
#>   [505] 5 5 1 3 3 1 3 4 1 1 4 3 3 2 3 3 3 5 1 2 5 2 5 1 2 3 3 5 3 1 3 5 3 3 1 4
#>   [541] 4 3 3 1 5 3 1 1 5 3 1 3 3 1 3 3 5 5 5 3 3 3 3 1 1 5 1 3 1 3 5 1 5 1 4 3
#>   [577] 3 3 3 3 1 3 2 2 3 3 3 5 3 3 3 1 1 5 1 3 4 3 1 1 3 3 3 1 3 4 2 4 5 5 3 3
#>   [613] 1 1 5 5 2 1 2 3 5 3 3 3 1 2 4 3 5 3 4 5 5 5 3 4 3 3 4 3 3 3 3 1 2 4 3 1
#>   [649] 3 4 5 1 3 1 3 1 3 2 3 1 2 3 4 2 1 2 3 2 3 2 4 2 1 3 1 3 3 1 1 3 3 2 3 2
#>   [685] 1 2 3 1 1 3 1 1 1 5 2 3 4 1 3 5 5 3 1 5 1 3 5 5 3 5 5 3 5 5 3 5 3 2 3 1
#>   [721] 5 5 2 1 5 1 5 3 3 3 3 3 2 2 1 2 3 4 5 5 1 2 4 3 1 2 3 3 2 3 3 3 2 2 1 3
#>   [757] 1 3 3 2 1 3 3 3 3 1 2 4 1 3 1 3 5 3 4 2 3 3 5 4 3 5 2 1 5 1 2 3 3 5 1 1
#>   [793] 2 5 3 3 4 1 2 1 1 1 3 4 3 3 1 3 1 3 1 3 1 3 2 5 1 2 1 3 3 3 5 3 1 5 4 2
#>   [829] 2 3 2 3 3 4 1 4 1 3 3 1 3 1 3 3 3 1 5 3 3 2 1 3 5 5 3 5 2 1 4 3 3 3 3 3
#>   [865] 3 1 5 3 5 5 3 5 3 1 3 5 5 2 1 1 4 1 3 5 3 3 2 4 2 3 4 3 2 3 2 1 2 1 5 1
#>   [901] 1 3 4 4 1 3 3 1 3 3 4 3 3 2 1 3 5 4 5 2 3 1 4 3 1 3 4 3 1 1 4 3 2 3 3 3
#>   [937] 3 5 3 3 5 3 5 5 5 1 1 5 2 3 3 2 2 3 1 3 1 3 3 3 1 2 3 3 3 5 5 3 4 5 3 3
#>   [973] 3 2 3 3 5 3 3 1 3 3 3 3 3 4 3 4 2 1 5 3 5 1 5 3 1 5 4 3 3 3 3 1 1 2 3 3
#>  [1009] 3 2 4 3 1 3 1 3 5 1 3 3 3 2 3 3 4 3 3 3 1 1 4 3 5 5 3 3 5 3 1 3 3 3 5 3
#>  [1045] 3 3 5 4 1 3 3 2 2 3 1 3 5 4 5 2 3 3 1 3 1 1 1 3 1 5 4 1 3 4 5 2 5 3 1 1
#>  [1081] 3 3 1 3 1 4 3 3 3 3 2 1 5 4 2 1 5 5 5 2 2 4 3 3 1 3 2 1 3 4 3 2 1 3 3 4
#>  [1117] 5 4 1 5 4 4 1 2 1 3 3 5 3 3 5 1 3 3 2 5 3 5 4 1 3 3 2 1 3 5 3 3 5 3 3 1
#>  [1153] 1 3 4 1 3 5 2 2 3 2 4 1 1 4 3 1 1 3 3 5 1 3 2 1 4 4 2 1 3 1 3 4 5 3 1 3
#>  [1189] 1 5 4 3 3 3 3 4 3 1 3 5 5 5 3 3 5 3 1 3 1 4 3 1 3 3 5 4 3 4 1 3 5 2 1 4
#>  [1225] 1 2 2 1 2 5 2 4 3 2 1 1 5 2 3 1 3 3 4 4 1 3 3 2 1 2 3 5 3 2 2 3 3 3 3 3
#>  [1261] 2 3 4 3 4 3 2 2 3 3 5 3 3 5 3 2 5 3 3 3 3 3 1 3 3 3 1 3 3 4 2 3 1 4 1 5
#>  [1297] 2 2 1 5 2 3 3 5 3 5 3 4 1 4 3 1 2 2 2 3 5 3 1 5 3 2 3 3 3 4 3 1 4 3 4 3
#>  [1333] 1 3 5 3 1 5 3 3 3 3 3 3 3 3 1 1 3 4 2 3 3 5 3 5 3 5 4 1 5 5 3 5 3 5 1 3
#>  [1369] 4 1 2 1 4 3 1 5 3 1 3 3 4 3 5 1 3 1 5 5 3 1 2 4 2 3 1 3 2 4 3 5 1 4 1 3
#>  [1405] 3 1 3 2 3 5 1 3 1 3 2 2 3 4 2 4 3 3 3 4 3 1 3 2 5 3 1 1 2 1 3 4 4 4 2 5
#>  [1441] 1 3 1 3 3 4 1 5 3 3 3 3 1 2 2 1 3 2 5 1 1 5 1 1 2 1 5 2 3 1 3 4 5 3 3 1
#>  [1477] 3 1 5 3 5 3 3 1 4 4 2 1 5 1 1 4 3 4 5 4 1 4 1 4 1 1 5 3 1 5 1 3 4 2 3 3
#>  [1513] 4 3 1 1 3 2 4 5 3 1 3 3 1 5 1 5 1 2 2 5 3 4 1 3 2 5 1 1 3 1 2 3 4 4 5 3
#>  [1549] 3 1 3 4 1 3 2 5 5 5 5 3 5 3 1 3 1 5 2 5 1 3 3 4 4 1 1 4 3 3 3 3 4 4 5 1
#>  [1585] 3 5 1 3 4 5 3 3 3 1 3 1 4 3 1 1 3 5 5 3 3 3 3 3 1 5 5 1 1 2 3 2 3 4 2 3
#>  [1621] 3 4 3 3 4 3 4 3 1 5 1 5 1 3 3 3 3 3 1 4 3 2 3 1 1 3 4 2 2 4 3 5 1 2 2 5
#>  [1657] 3 3 1 3 5 2 3 3 4 3 1 3 3 5 5 3 5 2 3 5 4 4 1 3 3 2 3 3 3 2 3 5 4 4 5 3
#>  [1693] 5 1 1 2 4 3 2 2 3 1 3 1 5 1 5 4 4 5 3 5 5 1 1 1 3 4 5 1 3 5 3 3 5 5 1 3
#>  [1729] 3 3 3 1 5 5 3 4 3 4 5 3 5 3 3 3 1 3 3 3 4 3 1 3 3 3 1 1 2 3 2 5 5 5 3 3
#>  [1765] 3 1 1 5 5 3 4 3 4 4 5 3 3 3 3 4 5 1 4 3 4 4 3 3 3 3 1 5 3 1 3 3 5 4 3 4
#>  [1801] 2 5 4 1 3 3 3 4 3 3 3 3 4 3 2 3 4 2 5 4 5 2 3 3 1 3 3 1 3 3 3 1 1 5 3 3
#>  [1837] 5 2 1 3 5 2 5 3 3 4 3 1 2 2 1 2 1 4 5 2 4 1 1 3 3 5 3 3 2 2 2 5 3 3 5 5
#>  [1873] 5 5 2 3 2 1 3 1 3 4 3 3 3 5 5 2 1 2 2 3 2 1 3 1 3 5 1 3 5 3 2 2 5 1 3 5
#>  [1909] 5 2 3 1 5 5 3 5 3 3 1 2 3 5 5 3 3 5 2 3 3 2 4 3 4 5 1 2 3 3 1 3 3 3 3 3
#>  [1945] 5 4 1 1 5 4 2 5 2 3 1 5 4 5 1 5 3 3 2 4 1 5 5 3 1 5 1 3 3 3 3 3 3 5 3 4
#>  [1981] 5 3 1 5 1 3 3 3 3 5 3 1 4 1 3 2 5 3 4 3 1 3 2 3 1 1 1 2 3 3 3 3 4 4 3 3
#>  [2017] 3 4 3 5 1 3 4 2 4 3 1 5 4 3 3 3 1 1 1 4 3 3 3 4 1 5 3 3 3 3 3 3 3 2 1 4
#>  [2053] 3 3 1 4 5 5 3 3 2 3 4 1 5 3 3 1 1 4 5 2 4 1 3 2 5 5 4 5 3 3 3 1 3 1 4 1
#>  [2089] 3 1 1 2 3 2 1 3 1 2 4 3 3 2 2 3 3 3 1 5 3 3 1 3 5 4 5 4 2 3 1 1 3 3 3 2
#>  [2125] 2 3 5 3 5 1 4 2 2 1 5 3 4 5 1 4 1 3 3 1 3 5 3 3 1 3 1 3 2 1 1 3 3 5 3 3
#>  [2161] 1 3 3 1 3 3 1 2 3 5 5 3 3 2 1 1 3 5 3 2 1 3 4 2 3 3 4 3 3 5 3 3 3 3 4 3
#>  [2197] 2 4 1 2 3 3 3 5 3 1 1 3 3 3 3 3 5 2 3 5 4 3 1 3 2 1 1 3 3 4 3 3 2 3 2 4
#>  [2233] 5 1 5 4 3 3 2 3 1 3 3 1 3 3 3 4 2 4 4 1 3 5 5 2 3 3 5 5 3 2 3 4 1 3 5 1
#>  [2269] 3 4 3 5 5 3 1 3 1 3 3 3 3 1 4 5 5 2 3 3 4 3 5 3 2 4 3 1 3 3 1 3 2 1 3 2
#>  [2305] 2 5 5 3 3 4 5 2 5 3 3 5 2 2 4 5 3 3 3 5 3 2 4 1 3 3 2 3 5 5 3 3 3 3 3 3
#>  [2341] 3 5 3 5 3 3 1 1 1 3 3 1 3 3 3 3 2 5 1 2 3 5 3 3 1 3 5 2 3 1 5 1 3 1 3 2
#>  [2377] 3 1 1 1 3 1 2 3 1 3 4 3 3 5 1 2 3 5 2 4 1 1 3 3 3 4 3 3 3 5 5 2 2 4 5 4
#>  [2413] 3 4 1 2 1 5 1 2 3 3 1 4 1 4 5 2 3 1 1 3 3 1 4 3 3 3 5 1 5 4 1 1 5 5 3 3
#>  [2449] 3 2 3 3 3 1 3 3 3 3 1 2 5 1 3 3 1 1 1 1 3 1 1 3 1 3 5 3 1 3 1 1 3 3 4 4
#>  [2485] 3 5 2 5 3 3 4 3 5 4 3 3 1 3 3 3 5 3 4 4 3 1 5 3 3 3 3 3 3 3 2 1 5 2 4 2
#>  [2521] 5 5 3 2 1 5 1 1 3 3 1 5 1 3 3 5 4 3 5 4 1 3 1 4 3 5 5 3 5 3 5 3 1 4 2 3
#>  [2557] 3 4 1 5 3 3 3 1 3 3 1 5 1 3 2 3 3 5 5 2 1 5 3 3 1 4 4 5 3 3 3 2 3 3 5 3
#>  [2593] 2 3 1 3 3 5 1 3 3 3 5 3 3 2 5 5 2 4 1 3 3 3 3 1 5 4 2 1 3 3 4 5 5 1 4 3
#>  [2629] 4 2 5 3 1 2 2 3 1 3 5 3 3 3 3 1 3 3 4 1 5 2 5 2 2 3 5 5 3 3 2 5 2 5 3 1
#>  [2665] 3 3 3 3 1 2 5 3 1 3 1 1 5 4 1 3 1 3 5 5 3 1 5 2 2 3 5 2 3 5 2 3 3 3 2 5
#>  [2701] 1 3 1 3 3 2 3 5 4 3 4 1 5 1 1 5 1 5 5 3 3 3 5 1 5 1 2 3 3 5 3 5 1 5 3 5
#>  [2737] 3 4 3 4 5 2 1 5 3 3 3 1 2 1 5 1 5 4 3 5 3 3 5 3 3 5 2 3 3 5 3 3 3 4 5 1
#>  [2773] 3 2 3 1 2 2 3 3 5 3 5 3 3 4 1 3 2 4 5 1 4 2 3 5 4 3 3 3 4 3 3 2 1 3 3 2
#>  [2809] 4 4 1 3 1 1 3 1 1 1 5 1 3 3 5 3 3 2 1 5 3 3 3 1 3 4 4 1 2 3 3 3 3 3 2 3
#>  [2845] 3 2 2 3 3 4 2 3 4 4 1 3 3 1 3 4 3 2 4 4 3 5 3 4 1 2 5 3 3 5 3 1 2 5 3 3
#>  [2881] 3 5 2 4 3 3 3 3 1 3 5 2 5 1 1 3 3 2 5 5 2 2 5 1 2 1 1 3 1 2 3 3 3 2 3 1
#>  [2917] 5 1 3 2 1 2 1 4 3 2 2 3 3 3 4 1 3 5 5 5 2 5 3 2 1 3 5 3 1 3 1 1 4 3 5 3
#>  [2953] 3 5 3 3 1 3 5 5 3 3 3 3 1 1 3 3 2 4 3 2 3 3 2 4 4 3 3 1 5 2 3 5 4 3 1 3
#>  [2989] 2 5 3 2 4 2 2 3 1 1 5 3 3 3 2 1 3 5 1 1 2 2 3 1 2 4 3 3 1 1 4 3 1 5 1 2
#>  [3025] 4 4 3 4 1 2 2 4 1 2 5 5 3 2 3 2 5 5 1 2 1 3 3 3 4 2 3 4 4 5 4 3 4 4 4 3
#>  [3061] 3 1 3 2 2 3 5 2 3 3 3 3 3 5 1 2 4 3 3 1 4 5 5 3 4 5 5 3 1 1 2 3 3 1 3 3
#>  [3097] 1 3 3 1 3 2 3 2 2 2 3 5 3 5 1 4 3 3 3 2 3 1 3 4 4 5 3 3 1 5 2 5 1 5 4 5
#>  [3133] 3 5 4 4 5 3 1 4 4 2 4 3 2 4 1 3 3 3 4 3 3 3 5 3 3 3 3 3 4 4 1 5 4 2 2 2
#>  [3169] 5 4 1 5 5 2 2 1 5 3 2 4 3 3 1 2 3 1 1 3 3 3 4 1 2 3 1 5 5 1 2 3 1 1 3 1
#>  [3205] 3 3 3 5 3 3 2 4 5 1 3 4 5 1 3 5 5 4 4 2 1 3 4 2 2 3 1 3 3 5 3 1 1 3 2 5
#>  [3241] 4 2 3 2 3 2 3 1 3 2 3 3 4 2 1 3 3 2 2 1 3 4 1 5 3 4 5 1 3 3 5 3 3 2 1 2
#>  [3277] 5 1 1 4 2 3 3 5 3 3 3 2 4 3 3 4 3 5 1 3 3 3 3 4 1 4 3 4 2 1 3 1 5 3 1 1
#>  [3313] 5 3 5 4 4 3 5 3 3 3 4 3 3 3 3 5 1 1 5 5 3 1 5 5 3 3 4 3 3 3 5 2 3 3 2 1
#>  [3349] 1 3 1 3 3 3 3 3 2 3 1 1 3 5 3 4 5 3 4 3 2 1 3 3 3 3 1 5 5 1 5 4 1 2 2 5
#>  [3385] 3 1 3 1 3 1 1 2 3 1 5 3 5 3 3 3 3 3 1 4 3 2 3 3 3 3 3 1 1 3 2 5 1 2 1 2
#>  [3421] 3 5 4 1 1 2 1 3 4 1 5 3 5 4 3 1 2 4 1 1 2 1 3 3 1 1 5 1 3 1 3 5 2 5 5 5
#>  [3457] 5 5 5 1 1 4 5 4 3 3 1 3 3 3 4 3 2 3 4 3 5 3 2 1 3 2 2 1 3 1 4 3 3 1 3 3
#>  [3493] 3 1 3 5 5 3 1 1 2 1 1 5 4 3 1 4 4 3 1 3 3 1 3 3 5 5 3 1 3 5 3 5 3 1 1 4
#>  [3529] 3 3 5 3 4 5 3 1 2 3 5 5 5 3 4 5 3 3 3 5 2 1 2 2 1 3 5 4 3 1 5 2 2 2 3 1
#>  [3565] 1 3 5 5 4 1 2 5 3 3 3 4 3 4 1 3 3 5 2 1 3 1 3 2 3 3 1 5 3 5 4 3 1 1 3 1
#>  [3601] 5 3 1 3 1 3 3 2 5 3 1 3 3 2 1 4 1 1 1 1 1 3 1 4 3 1 1 3 3 5 3 3 3 5 2 3
#>  [3637] 3 3 3 5 5 2 4 1 3 3 5 5 3 3 2 1 3 4 4 3 4 2 3 3 3 4 3 5 4 3 2 1 3 3 1 1
#>  [3673] 4 4 3 2 1 3 3 3 4 4 3 2 4 4 1 4 4 3 3 3 5 4 1 3 2 3 1 3 1 1 3 5 3 3 5 3
#>  [3709] 3 3 3 4 2 3 3 3 1 1 1 1 3 5 1 3 1 2 3 2 1 2 1 4 3 1 4 3 3 1 2 5 2 2 1 3
#>  [3745] 1 3 3 3 3 1 3 2 1 3 3 5 3 3 3 5 2 2 1 2 3 4 3 3 1 2 3 3 3 1 3 1 3 4 3 5
#>  [3781] 3 5 3 5 3 5 5 1 5 1 4 3 3 4 3 3 3 3 1 3 2 1 2 3 3 3 3 3 5 1 3 1 2 3 5 1
#>  [3817] 3 5 5 3 3 2 4 3 3 2 1 5 4 5 1 3 3 5 4 5 3 4 3 5 1 3 3 4 1 3 3 4 1 1 3 5
#>  [3853] 3 4 3 3 2 2 2 5 3 3 2 5 3 3 2 5 3 1 5 2 1 5 1 1 3 2 5 2 2 3 4 5 3 5 1 4
#>  [3889] 2 3 5 1 2 3 3 3 3 2 5 5 3 3 5 2 2 3 5 2 2 1 1 3 4 2 5 3 4 1 5 2 2 2 4 1
#>  [3925] 1 5 2 3 4 4 3 1 3 4 2 3 1 4 3 4 2 2 4 4 3 2 4 3 4 3 5 1 3 5 3 2 3 2 3 4
#>  [3961] 3 3 1 3 3 3 1 2 2 3 4 2 3 5 1 2 5 3 3 3 2 4 5 4 2 3 5 1 5 3 1 2 3 5 2 3
#>  [3997] 3 5 1 1 4 3 3 1 5 3 1 1 3 3 1 1 1 3 2 4 3 3 2 2 2 3 4 3 2 3 5 2 2 5 4 1
#>  [4033] 5 1 3 3 2 3 4 3 4 1 5 1 5 3 3 1 3 3 5 2 3 4 1 3 3 3 3 3 5 3 1 3 3 3 1 3
#>  [4069] 5 3 3 1 3 3 3 3 4 1 4 2 3 2 1 3 5 3 4 1 5 5 3 3 1 4 1 1 1 3 3 3 3 3 3 4
#>  [4105] 1 3 3 5 1 3 3 3 5 3 3 3 3 3 3 3 1 4 2 3 2 3 4 1 5 2 1 1 5 4 2 2 1 3 1 3
#>  [4141] 5 1 3 5 2 3 4 3 1 5 2 3 4 5 3 1 2 3 5 5 1 3 1 5 3 3 5 1 1 2 5 4 5 4 1 3
#>  [4177] 3 4 3 1 1 3 4 3 2 5 3 3 4 5 5 1 5 1 1 3 2 5 1 5 3 5 3 5 3 4 3 1 1 2 3 5
#>  [4213] 1 3 3 2 1 1 4 5 1 4 1 5 3 1 2 2 3 3 2 3 3 3 4 3 4 3 4 5 1 4 3 3 5 3 5 5
#>  [4249] 3 2 5 3 1 3 5 1 4 3 3 3 1 1 4 5 1 4 4 2 5 1 3 1 3 3 3 2 1 5 3 3 5 4 1 3
#>  [4285] 2 3 1 1 1 2 1 1 5 3 2 1 3 5 4 3 4 2 3 1 4 5 3 1 4 3 4 3 3 2 3 3 1 4 5 5
#>  [4321] 4 2 3 3 2 5 3 1 3 5 1 3 3 3 5 3 2 3 2 5 2 3 3 3 3 4 1 2 3 5 5 3 3 2 2 3
#>  [4357] 3 1 4 4 3 1 5 3 5 3 1 2 1 3 3 1 3 5 3 4 5 3 5 3 2 1 1 1 3 5 5 3 4 2 3 2
#>  [4393] 1 4 2 5 5 5 1 3 5 3 1 2 3 5 2 1 2 4 1 1 1 1 1 3 3 2 3 3 3 2 5 1 5 4 3 4
#>  [4429] 3 2 1 1 2 3 3 3 3 3 3 1 1 3 3 3 5 3 5 5 1 4 1 4 3 3 5 3 2 3 2 1 2 4 5 1
#>  [4465] 3 1 1 2 2 3 1 3 3 4 3 2 3 5 5 4 2 4 3 4 3 3 3 3 3 3 1 3 4 4 1 4 4 5 3 3
#>  [4501] 2 5 1 3 4 1 3 1 5 5 5 3 3 3 5 2 1 5 4 4 1 2 2 2 3 3 3 1 2 5 3 3 4 1 5 1
#>  [4537] 1 3 1 3 3 5 5 3 3 3 3 3 3 3 3 4 3 3 1 5 3 3 1 4 4 3 2 5 4 1 5 1 2 2 1 3
#>  [4573] 1 4 2 3 1 3 1 1 3 4 2 1 1 4 3 2 4 3 3 3 2 3 3 3 1 5 5 5 2 1 3 5 1 5 3 4
#>  [4609] 3 3 1 2 5 1 3 2 3 4 2 1 2 3 3 3 1 3 5 4 3 1 4 5 2 2 1 4 5 5 3 3 2 2 3 2
#>  [4645] 2 1 2 2 1 1 1 3 4 3 3 5 5 5 5 2 5 1 2 5 1 5 3 3 4 4 1 5 2 4 1 2 1 3 4 2
#>  [4681] 2 1 5 1 3 4 3 2 3 1 5 2 3 4 3 3 5 3 3 3 3 3 3 1 3 1 3 3 5 1 1 2 5 2 1 3
#>  [4717] 3 5 5 1 3 3 5 2 2 3 3 1 3 4 1 2 3 5 3 1 1 3 3 3 2 3 5 4 3 5 1 3 5 3 3 1
#>  [4753] 3 5 5 3 5 1 1 5 5 1 3 5 3 1 3 5 2 1 3 4 1 1 2 3 4 1 1 3 3 3 3 1 3 3 5 3
#>  [4789] 3 4 4 5 3 1 5 2 3 4 2 2 3 3 3 2 2 5 3 3 5 4 5 3 4 2 5 4 4 5 3 2 4 2 2 1
#>  [4825] 3 4 1 5 2 3 1 3 1 2 3 2 4 3 2 1 3 3 3 4 5 4 2 5 1 4 1 5 3 3 2 3 2 3 3 3
#>  [4861] 2 5 1 3 5 3 1 3 1 1 5 2 3 5 3 1 2 1 3 5 5 5 3 1 1 4 3 5 2 3 3 3 3 3 5 1
#>  [4897] 5 3 5 3 2 3 5 5 3 5 3 3 3 2 3 1 5 3 2 3 5 1 1 3 3 3 3 3 5 3 1 1 4 1 1 5
#>  [4933] 2 1 3 3 3 1 1 1 3 1 1 1 3 5 5 1 3 1 1 5 3 3 2 4 3 3 4 3 2 3 1 2 1 1 5 5
#>  [4969] 3 1 3 3 5 5 3 4 1 1 5 3 5 5 1 2 3 3 1 1 3 5 3 5 2 1 3 3 3 3 4 3 4 2 5 3
#>  [5005] 1 3 5 1 2 3 5 3 1 4 3 2 1 3 3 3 3 2 1 1 1 3 3 2 2 4 4 3 3 2 3 5 1 3 4 1
#>  [5041] 1 3 3 3 5 4 3 4 4 3 3 4 3 4 3 4 5 3 3 5 1 5 5 1 3 1 1 5 2 1 3 1 2 1 1 3
#>  [5077] 3 2 3 5 3 2 3 4 4 3 3 4 1 1 5 2 5 3 4 3 4 1 5 3 2 5 1 1 3 3 3 3 4 1 3 2
#>  [5113] 5 2 1 1 4 3 2 3 2 3 5 3 3 2 1 3 3 3 1 3 3 3 5 3 5 1 1 3 3 1 5 2 3 5 3 4
#>  [5149] 4 3 3 3 1 3 3 4 2 2 1 5 3 3 5 3 1 4 3 3 3 3 5 3 3 2 2 5 3 2 3 4 2 1 5 3
#>  [5185] 1 5 3 1 3 2 5 2 1 2 3 5 3 2 3 1 4 1 1 3 2 3 5 3 3 5 3 2 5 4 3 4 1 4 3 2
#>  [5221] 2 5 3 2 3 1 2 3 3 2 2 1 3 1 1 3 4 3 4 3 3 3 3 3 1 3 3 3 2 2 1 1 5 1 3 5
#>  [5257] 3 4 3 5 2 3 2 4 2 3 1 3 5 3 1 2 3 1 2 4 5 3 3 4 2 1 2 2 3 3 3 1 3 1 3 1
#>  [5293] 3 3 2 3 2 2 5 3 4 3 2 1 3 2 5 3 3 1 1 4 5 3 5 3 4 1 4 3 1 2 1 1 3 1 3 3
#>  [5329] 2 3 1 1 2 1 3 3 3 2 4 2 4 2 3 4 1 5 5 5 3 3 3 2 1 3 3 2 2 2 3 3 5 1 3 1
#>  [5365] 2 3 3 3 3 5 5 2 2 3 4 2 1 2 3 2 4 1 1 1 5 1 4 3 3 3 3 5 5 1 3 2 4 3 4 1
#>  [5401] 4 5 5 3 5 3 3 3 2 4 5 4 2 1 2 4 5 2 3 3 1 5 5 5 1 5 2 4 2 3 3 4 2 3 3 3
#>  [5437] 2 3 1 1 3 3 5 4 2 5 3 4 3 1 1 2 2 3 3 3 1 5 1 5 2 3 1 2 5 2 3 1 3 3 3 2
#>  [5473] 1 3 3 4 2 1 3 2 2 4 5 2 5 4 3 1 5 4 3 5 5 4 3 4 5 3 1 3 4 1 4 1 5 5 1 3
#>  [5509] 1 2 3 3 5 1 3 3 4 3 5 5 3 3 3 3 3 1 3 1 4 3 3 3 3 3 1 1 5 1 3 5 1 1 1 1
#>  [5545] 3 3 1 3 1 5 4 2 2 1 5 3 3 5 3 3 5 2 3 5 5 1 3 1 2 3 1 3 1 3 2 3 3 1 3 2
#>  [5581] 3 3 2 3 1 3 1 5 4 2 1 3 4 5 3 4 3 3 1 2 5 1 4 3 1 2 4 3 1 5 3 1 3 3 3 3
#>  [5617] 4 5 1 3 3 4 3 3 3 2 1 2 1 2 4 5 3 1 1 3 5 5 1 4 5 2 4 3 5 5 5 1 1 4 4 3
#>  [5653] 1 3 3 4 3 3 3 5 3 4 4 3 4 4 1 3 3 2 1 4 1 3 3 5 3 5 3 2 2 1 2 2 2 1 2 3
#>  [5689] 4 1 5 4 4 4 1 4 3 3 3 2 1 5 1 3 3 5 2 4 3 1 2 1 4 3 3 3 5 3 3 2 1 1 5 1
#>  [5725] 3 1 4 3 5 5 3 3 3 3 4 4 3 1 2 4 3 3 3 1 2 5 5 2 3 1 5 3 3 5 2 1 1 5 3 2
#>  [5761] 1 3 2 3 3 4 3 3 3 2 3 3 1 1 1 3 3 5 3 3 3 5 2 1 1 3 4 3 3 4 1 1 5 1 1 1
#>  [5797] 5 3 1 3 2 5 4 2 3 2 3 2 5 2 4 2 3 3 3 3 1 3 4 4 5 3 3 2 3 3 3 3 4 3 4 1
#>  [5833] 3 3 1 1 3 5 3 4 3 3 3 3 3 5 3 3 1 2 3 3 5 3 1 3 2 3 3 3 4 2 2 3 3 1 4 3
#>  [5869] 1 2 4 3 3 2 3 3 4 2 5 2 5 5 3 1 4 4 5 5 1 5 4 3 3 1 2 3 4 2 3 5 4 3 3 3
#>  [5905] 2 4 3 5 5 1 3 2 1 3 3 3 1 3 1 3 1 3 5 3 2 3 2 3 2 4 3 1 3 5 3 3 1 3 3 3
#>  [5941] 5 5 2 3 3 1 2 1 4 1 2 2 3 3 5 2 1 2 5 1 3 3 3 3 1 5 2 3 3 1 3 3 3 2 4 1
#>  [5977] 5 3 4 3 2 3 5 3 2 4 5 4 3 1 3 3 3 3 4 3 5 3 3 2 5 1 4 5 4 3 3 3 3 1 3 2
#>  [6013] 5 1 2 1 2 3 5 3 1 4 1 3 3 1 1 2 3 1 1 2 1 3 3 1 5 3 3 5 4 3 2 3 2 4 3 3
#>  [6049] 3 4 5 1 3 3 5 5 3 2 2 5 1 3 4 3 1 2 5 3 3 1 2 2 1 5 2 5 1 3 5 5 2 3 5 4
#>  [6085] 3 3 1 5 1 1 3 1 1 1 2 3 1 3 4 3 2 3 2 3 1 4 3 3 3 5 1 1 2 1 2 3 3 1 3 5
#>  [6121] 3 1 3 1 1 3 4 1 5 3 2 3 1 4 3 1 3 3 3 1 2 3 3 1 4 4 3 3 2 1 3 4 1 2 3 2
#>  [6157] 1 5 2 3 4 2 1 3 3 3 2 4 3 3 5 3 3 5 3 3 4 5 2 4 1 4 5 1 5 1 2 3 1 1 5 3
#>  [6193] 1 1 5 3 4 1 3 4 5 1 1 3 1 3 1 2 3 3 3 4 1 1 4 1 2 3 3 5 3 4 2 3 3 3 1 5
#>  [6229] 4 1 5 1 1 1 3 3 3 2 5 2 2 2 3 3 4 1 3 4 4 3 2 3 3 3 2 1 3 3 4 4 1 4 5 3
#>  [6265] 2 4 2 2 3 3 2 3 3 5 3 2 3 3 1 3 1 3 1 3 5 1 1 2 5 2 3 3 1 3 3 3 4 1 3 1
#>  [6301] 5 5 2 2 3 2 3 5 4 2 3 2 3 5 3 3 5 3 5 3 2 4 3 2 3 4 2 4 3 3 3 3 3 3 1 1
#>  [6337] 5 3 3 4 3 4 3 5 5 5 1 2 3 2 4 2 4 1 3 3 3 3 1 4 1 2 5 3 3 5 4 3 3 1 3 3
#>  [6373] 4 5 1 1 1 1 4 2 2 2 3 2 4 2 5 2 3 3 3 4 2 3 2 2 3 1 3 3 5 4 5 3 2 1 1 3
#>  [6409] 3 3 3 1 5 1 3 1 1 3 3 2 3 5 3 3 1 3 1 5 3 3 4 5 5 1 1 1 5 3 3 3 1 4 1 1
#>  [6445] 2 4 5 1 5 3 1 5 1 3 4 3 4 2 2 1 3 3 3 3 5 5 3 3 1 2 2 3 3 3 3 1 2 1 3 1
#>  [6481] 2 4 3 3 3 3 3 5 3 3 1 3 2 4 1 1 5 3 4 1 3 1 1 1 3 2 2 3 3 3 3 2 1 4 5 3
#>  [6517] 2 3 3 3 1 1 3 3 1 4 3 1 3 3 1 4 5 3 1 1 3 3 5 5 3 3 1 2 1 3 3 2 1 3 3 2
#>  [6553] 4 1 4 3 4 1 1 1 4 3 3 2 5 2 3 3 3 5 1 3 5 1 4 3 5 2 2 1 3 2 5 3 3 3 2 2
#>  [6589] 2 3 4 5 3 3 3 3 1 3 3 5 3 3 3 3 3 2 1 3 3 5 2 3 3 3 5 2 5 3 2 5 3 4 1 5
#>  [6625] 1 5 3 5 2 3 5 5 3 4 3 3 2 1 3 3 2 2 3 3 4 1 1 3 3 1 3 3 3 5 2 3 3 3 3 2
#>  [6661] 4 5 1 4 5 2 2 1 1 2 2 3 1 3 5 3 5 2 1 4 3 5 2 3 5 4 5 1 5 2 3 2 3 4 2 2
#>  [6697] 4 3 3 2 3 3 5 1 4 5 1 4 3 5 3 3 3 5 5 1 2 3 3 1 5 3 1 2 4 5 2 1 3 1 3 1
#>  [6733] 5 2 3 3 5 3 3 5 2 1 3 3 4 1 4 3 2 4 5 3 3 2 5 1 3 3 4 5 3 4 1 5 2 4 3 1
#>  [6769] 5 3 1 3 3 1 3 4 5 4 2 1 3 4 1 4 2 2 3 5 1 2 2 1 1 3 3 3 3 3 1 2 3 3 3 4
#>  [6805] 4 3 2 5 3 1 4 5 3 3 3 3 2 3 3 3 3 1 2 3 2 2 1 1 3 1 2 5 1 3 1 3 3 5 1 4
#>  [6841] 2 1 3 5 2 5 3 3 3 3 5 1 1 3 5 3 3 5 4 4 4 3 5 4 3 1 3 3 5 3 2 3 3 5 5 4
#>  [6877] 5 3 3 1 3 5 3 1 3 3 4 5 1 3 1 3 1 1 3 5 2 3 3 4 3 1 1 3 1 1 3 3 4 2 2 3
#>  [6913] 5 3 3 4 4 3 5 2 5 1 2 3 4 1 5 1 5 3 1 3 5 4 5 3 5 4 3 5 2 5 3 3 3 5 3 1
#>  [6949] 4 4 3 3 1 3 2 1 3 1 3 3 1 4 3 2 3 5 3 3 3 2 5 5 3 5 4 5 1 1 3 3 2 4 4 3
#>  [6985] 2 3 1 2 3 2 3 2 3 3 3 3 2 3 3 4 4 3 3 1 3 2 3 3 2 3 3 3 3 5 3 4 1 5 5 1
#>  [7021] 2 2 1 3 1 3 4 2 1 3 5 3 2 1 1 1 2 3 1 1 3 5 3 3 3 5 1 4 3 1 5 1 4 5 5 3
#>  [7057] 3 4 5 3 1 5 3 4 3 3 2 2 5 1 1 3 3 1 3 5 5 5 1 2 2 2 3 3 4 1 3 3 4 3 1 3
#>  [7093] 3 5 3 4 5 1 3 4 3 3 1 5 1 3 3 5 5 2 4 3 4 3 1 2 5 3 5 1 3 1 1 2 3 2 3 2
#>  [7129] 2 1 3 2 3 3 3 5 2 5 3 2 5 4 3 1 1 2 4 3 3 4 3 5 3 5 1 2 1 2 5 2 1 3 1 2
#>  [7165] 4 3 5 1 2 3 2 3 5 4 1 5 4 1 5 3 3 3 4 5 5 3 1 2 2 3 3 3 5 5 3 1 3 1 4 3
#>  [7201] 4 3 5 5 3 3 3 5 3 2 3 3 2 3 3 5 3 3 3 3 5 4 4 1 2 3 1 4 3 5 3 5 5 3 5 3
#>  [7237] 3 2 3 3 4 3 2 1 3 3 3 2 4 3 5 3 5 5 1 3 5 5 3 4 3 3 1 5 2 2 3 5 3 1 2 3
#>  [7273] 4 1 3 5 3 1 5 1 3 2 1 1 2 2 3 1 2 3 4 4 2 2 5 5 4 1 1 3 3 3 4 3 1 1 1 3
#>  [7309] 1 1 3 3 3 5 3 2 1 2 5 4 3 3 1 1 5 3 3 1 1 1 1 3 3 5 3 4 1 4 1 2 1 2 1 1
#>  [7345] 2 1 3 1 3 5 1 3 4 1 3 3 3 4 4 1 3 2 1 3 2 2 4 1 5 1 1 5 2 5 3 1 5 3 2 4
#>  [7381] 5 2 1 3 4 3 2 3 3 3 1 3 3 3 2 3 3 4 1 4 5 5 5 5 5 3 1 5 3 5 2 5 5 2 1 4
#>  [7417] 5 5 1 2 5 2 1 3 3 1 3 3 3 4 4 1 4 4 3 1 3 3 4 5 3 5 3 3 1 3 2 3 5 2 3 3
#>  [7453] 5 2 4 1 3 1 4 2 3 5 5 3 1 2 3 3 1 1 4 5 1 1 1 3 5 5 1 5 1 3 3 5 5 3 1 5
#>  [7489] 1 3 4 3 3 1 1 5 1 5 3 3 5 1 2 3 1 3 1 2 3 4 5 1 3 3 1 5 5 3 3 4 4 5 1 1
#>  [7525] 5 3 2 4 3 3 3 1 3 1 5 1 4 2 5 2 1 4 3 1 1 3 5 3 3 3 3 3 1 5 3 3 3 3 2 1
#>  [7561] 1 4 5 2 3 3 3 2 1 5 1 5 3 3 1 4 1 2 5 3 4 3 4 3 3 3 2 5 5 3 1 3 1 2 2 3
#>  [7597] 4 4 3 4 3 5 4 2 5 3 2 1 5 1 3 3 3 3 5 3 3 3 1 5 3 3 1 1 4 2 2 2 3 1 1 5
#>  [7633] 3 3 1 5 1 2 1 3 1 2 3 5 3 2 5 1 1 4 1 5 3 3 4 2 3 1 4 3 3 1 3 3 5 5 5 4
#>  [7669] 4 5 3 1 1 3 5 1 3 4 5 5 3 1 1 1 3 5 4 3 5 3 1 3 4 1 5 3 2 3 5 3 1 5 4 4
#>  [7705] 3 1 2 5 4 3 4 2 1 3 2 1 4 1 1 5 3 1 1 1 3 3 3 3 3 2 1 1 3 2 3 4 5 5 3 3
#>  [7741] 1 2 2 3 3 1 1 4 1 3 3 2 2 2 3 1 2 1 3 2 3 3 3 3 3 2 3 3 2 2 5 2 5 3 3 1
#>  [7777] 2 1 3 5 1 3 3 4 5 4 5 1 4 3 3 1 1 4 1 1 3 5 3 1 2 3 3 3 5 3 4 4 3 1 1 3
#>  [7813] 3 1 2 5 3 3 2 5 3 5 3 2 4 2 3 5 2 3 1 3 3 5 1 5 5 5 3 5 3 3 4 1 3 2 1 3
#>  [7849] 3 3 3 3 1 1 2 1 1 3 1 3 5 1 1 2 5 5 3 4 2 3 3 2 3 3 3 5 4 5 2 3 4 5 5 5
#>  [7885] 5 3 4 3 2 1 3 3 1 2 2 1 5 3 4 3 5 3 5 3 3 1 3 5 2 3 1 3 5 5 1 5 3 1 4 3
#>  [7921] 3 4 1 2 1 1 1 3 3 3 1 3 2 5 1 1 3 3 3 3 3 4 4 3 3 3 2 1 1 2 5 3 3 3 3 3
#>  [7957] 1 2 1 1 3 1 3 4 2 3 3 3 3 2 4 5 3 3 1 3 4 4 3 3 1 1 2 1 1 3 5 3 2 1 3 1
#>  [7993] 3 3 1 3 3 2 3 1 3 4 3 2 4 3 3 3 3 3 3 5 3 3 1 2 3 4 1 3 3 3 3 3 2 3 3 3
#>  [8029] 3 1 1 2 5 1 3 5 1 1 3 5 3 3 2 4 4 3 3 4 3 1 2 4 3 2 1 2 5 2 3 2 3 3 3 1
#>  [8065] 1 1 5 4 1 2 3 4 2 1 3 3 3 5 3 3 4 5 3 3 3 5 5 1 1 1 1 3 2 3 1 1 3 1 4 5
#>  [8101] 3 3 5 2 5 1 2 2 3 2 3 5 2 1 2 3 4 3 4 5 3 3 3 4 3 2 2 2 3 3 3 2 1 2 3 1
#>  [8137] 5 1 3 3 4 5 1 5 5 1 3 3 5 5 2 4 5 1 1 1 3 1 3 1 1 3 4 2 3 5 4 3 5 2 5 4
#>  [8173] 2 3 3 1 5 3 3 4 2 5 2 2 3 1 1 5 1 2 4 2 1 3 1 5 3 3 4 3 5 5 1 4 5 3 2 3
#>  [8209] 3 5 2 2 2 3 2 5 1 3 3 3 3 1 3 4 2 3 4 3 4 3 5 3 2 3 3 1 4 2 3 3 1 3 5 2
#>  [8245] 2 3 1 3 5 3 3 3 4 5 3 1 2 3 2 5 1 4 1 2 1 3 4 3 3 3 3 5 2 3 3 5 1 3 3 5
#>  [8281] 1 4 1 5 1 5 3 4 1 5 1 3 3 3 3 1 3 1 1 1 4 5 3 1 3 5 3 3 3 2 5 1 1 3 4 5
#>  [8317] 4 3 1 2 1 5 4 1 5 4 3 3 1 5 4 3 3 3 1 2 5 5 1 3 3 5 5 5 5 1 3 3 3 1 3 3
#>  [8353] 4 4 5 3 4 1 3 2 3 3 2 5 1 2 3 3 1 2 1 3 1 5 1 3 2 2 3 5 5 2 5 1 3 3 3 3
#>  [8389] 5 3 3 5 4 4 3 3 4 1 2 4 5 1 5 1 3 3 3 5 5 3 3 3 3 3 3 5 1 3 2 5 4 4 3 3
#>  [8425] 1 4 1 4 1 3 1 3 4 2 3 3 3 3 3 3 4 3 3 5 2 3 3 1 3 1 4 5 1 1 3 2 1 3 4 1
#>  [8461] 4 3 1 3 3 3 2 1 5 3 3 3 3 5 3 4 2 1 3 3 4 1 3 1 3 5 1 2 1 2 3 5 3 2 3 5
#>  [8497] 3 5 1 4 5 2 2 3 3 5 3 2 1 3 3 4 1 3 2 3 3 3 5 1 3 3 3 3 1 5 2 1 2 1 4 2
#>  [8533] 1 1 3 1 3 2 3 2 3 3 3 5 1 2 3 5 1 5 5 4 5 1 2 4 2 3 3 5 3 3 2 1 4 5 3 2
#>  [8569] 5 4 3 3 5 3 1 3 1 3 5 1 4 3 1 3 4 3 4 1 5 4 5 4 3 1 4 4 1 3 3 5 3 2 1 3
#>  [8605] 4 5 3 4 2 4 3 2 1 3 3 1 5 5 2 1 1 3 1 1 4 3 4 4 3 3 3 3 5 3 4 3 3 3 2 4
#>  [8641] 1 3 3 1 1 1 4 1 3 1 3 1 2 3 3 4 3 3 1 1 3 1 5 1 2 5 3 3 4 1 3 4 4 3 1 1
#>  [8677] 2 3 1 2 1 5 1 5 3 1 1 4 3 1 1 3 3 1 4 1 2 2 5 5 3 4 3 5 5 5 5 3 1 3 5 1
#>  [8713] 3 2 2 1 5 4 5 1 1 1 2 2 4 3 1 2 3 3 1 5 1 3 2 5 2 2 1 1 3 1 5 4 3 1 1 5
#>  [8749] 3 3 1 1 3 3 3 2 3 2 5 5 3 2 4 3 2 5 1 3 3 3 4 1 1 5 3 5 2 2 1 1 3 3 3 2
#>  [8785] 3 1 3 1 2 1 2 3 3 2 5 2 2 3 2 1 3 3 2 2 5 1 2 3 1 1 2 2 2 3 5 1 3 2 3 3
#>  [8821] 3 3 3 2 3 3 5 2 2 3 4 5 1 3 2 5 1 3 1 1 5 5 5 1 3 3 3 1 1 3 3 5 4 3 3 3
#>  [8857] 1 5 4 2 2 1 1 1 1 3 2 3 2 3 5 3 2 3 5 2 5 3 5 5 3 3 3 2 5 3 5 3 5 2 1 5
#>  [8893] 3 3 3 3 3 5 3 3 5 3 1 4 3 3 2 3 1 3 3 2 1 5 3 1 5 2 1 3 2 1 1 1 1 4 2 3
#>  [8929] 1 5 4 1 5 1 3 4 3 2 2 3 1 2 3 3 5 1 1 1 4 5 2 3 3 3 5 2 3 2 5 4 3 2 4 4
#>  [8965] 1 3 1 5 5 2 5 1 5 3 3 4 4 5 3 3 3 2 1 5 3 3 3 3 5 1 4 1 3 2 2 3 5 3 1 5
#>  [9001] 5 3 3 1 3 3 4 1 5 1 3 3 3 4 1 5 1 2 2 1 4 3 2 3 3 4 3 1 3 4 4 5 3 4 1 1
#>  [9037] 2 3 1 3 3 4 2 3 5 3 2 1 5 3 1 2 3 3 4 5 1 3 1 5 4 5 4 3 4 2 2 5 3 4 1 2
#>  [9073] 1 3 3 3 3 3 4 5 4 1 3 1 4 5 1 3 2 5 3 2 3 4 1 3 1 2 4 2 3 4 5 4 1 1 3 1
#>  [9109] 3 3 3 5 5 3 5 3 1 3 3 3 1 4 4 3 3 3 3 1 3 4 1 3 1 3 3 4 3 3 5 5 1 3 5 3
#>  [9145] 5 5 3 1 3 1 3 2 1 1 4 4 3 3 3 3 1 2 1 3 4 4 1 2 3 3 3 2 3 3 3 1 1 1 4 4
#>  [9181] 1 4 1 3 2 3 1 1 1 1 1 3 2 1 5 5 1 3 5 5 1 2 3 4 3 5 1 4 4 5 1 1 1 3 3 4
#>  [9217] 5 2 3 2 2 2 5 3 3 3 4 1 3 1 1 3 2 2 5 4 5 1 1 3 3 3 4 3 3 1 4 3 3 2 5 5
#>  [9253] 3 5 3 3 1 3 3 3 3 5 3 3 2 2 2 3 3 5 1 3 3 2 5 4 3 3 3 5 4 1 3 2 3 1 1 3
#>  [9289] 1 1 3 3 3 3 5 2 3 5 1 2 3 1 1 3 3 1 3 3 3 2 2 3 1 2 5 4 2 1 3 1 2 5 1 3
#>  [9325] 4 3 2 3 1 1 1 4 5 4 3 3 1 3 4 3 1 4 3 3 3 2 3 3 3 5 3 3 2 3 3 1 5 5 3 3
#>  [9361] 1 1 5 1 4 1 5 3 2 3 5 2 5 1 4 4 3 3 3 3 3 3 1 1 1 3 3 3 5 5 3 2 5 1 3 2
#>  [9397] 4 3 4 2 2 3 3 3 5 5 5 1 4 5 5 3 1 3 3 1 3 2 3 5 3 3 2 5 4 3 5 3 3 5 5 3
#>  [9433] 4 3 3 3 3 5 3 1 1 4 2 1 5 1 5 1 3 3 3 1 3 3 1 2 1 5 1 2 1 5 4 3 5 4 4 2
#>  [9469] 2 5 4 4 2 3 1 5 5 1 5 3 1 3 5 1 2 3 1 3 3 1 2 5 3 3 3 3 1 3 3 5 3 2 3 1
#>  [9505] 1 4 1 3 5 4 2 2 3 5 3 1 3 3 2 1 3 1 3 3 1 5 3 4 3 4 2 3 3 3 2 3 3 4 3 5
#>  [9541] 3 1 2 4 3 1 5 3 3 3 3 4 2 3 1 3 1 5 4 1 3 4 3 4 3 3 3 5 5 1 3 3 3 3 3 1
#>  [9577] 3 1 2 2 2 3 1 2 3 3 2 2 2 3 2 1 1 4 2 2 4 4 4 1 3 1 4 1 3 1 3 3 4 3 3 2
#>  [9613] 4 5 4 2 3 1 4 4 3 2 1 3 4 5 3 4 1 3 3 3 2 2 4 5 3 3 1 5 3 3 3 3 4 1 1 5
#>  [9649] 1 3 3 1 3 4 5 1 3 2 3 2 3 4 1 1 2 4 1 2 5 1 2 1 5 1 3 3 3 3 4 1 2 3 5 1
#>  [9685] 4 4 5 5 3 2 2 3 3 2 5 3 2 4 4 1 1 5 3 5 1 1 5 4 3 5 3 3 3 4 4 5 1 5 2 1
#>  [9721] 1 3 3 2 3 5 1 1 1 3 2 3 3 5 5 5 1 1 1 4 3 1 3 1 4 1 3 3 2 3 5 3 3 5 1 1
#>  [9757] 3 5 3 3 1 4 3 3 3 3 1 4 3 3 2 4 3 1 4 3 3 3 5 4 3 5 3 3 3 3 3 5 3 4 4 2
#>  [9793] 5 4 1 3 4 3 1 2 2 3 3 3 1 4 1 3 1 5 1 1 3 3 3 1 1 5 1 5 3 3 4 1 1 1 1 1
#>  [9829] 1 2 2 1 3 5 1 2 3 3 5 3 3 2 3 2 2 1 1 1 3 3 2 4 3 3 3 1 4 5 3 4 3 1 3 5
#>  [9865] 2 5 3 5 5 4 5 1 4 3 3 1 4 2 3 4 1 5 5 3 3 3 2 4 3 3 3 2 5 1 5 3 5 3 2 4
#>  [9901] 3 1 3 3 2 3 4 1 1 4 1 1 1 3 4 1 3 2 1 1 3 1 3 1 3 1 3 5 5 1 1 1 1 3 1 4
#>  [9937] 2 4 2 4 4 3 4 3 3 3 3 3 4 5 3 3 1 3 2 3 3 1 2 4 1 1 3 3 3 5 3 3 3 3 5 5
#>  [9973] 5 3 3 1 1 5 3 5 5 2 2 3 1 2 2 2 2 3 3 1 3 3 1 5 3 5 5 5 5 4 3 2 2 3 3 1
#> [10009] 3 2 5 1 1 3 3 2 4 4 5 5 5 1 2 1 1 3 5 3 3 3 4 5 1 1 4 2 3 5 5 2 3 3 2 3
#> [10045] 3 5 3 3 3 1 3 3 2 3 5 1 5 1 4 1 5 5 2 3 4 2 3 2 3 3 3 3 2 2 1 1 1 2 1 1
#> [10081] 5 1 2 4 2 4 1 3 1 1 3 1 3 1 2 3 3 3 4 3 5 1 1 3 4 1 4 4 5 3 1 3 5 2 3 3
#> [10117] 4 3 3 1 5 3 3 2 4 2 3 5 1 4 3 2 3 3 1 5 1 4 1 2 1 5 2 3 3 4 2 2 3 5 4 3
#> [10153] 3 2 3 4 1 2 4 5 1 5 3 2 5 2 2 1 3 4 3 2 3 3 5 1 3 3 3 4 1 5 1 5 2 5 1 3
#> [10189] 4 3 1 3 4 3 1 1 1 5 1 5 1 5 4 4 5 3 4 2 3 1 1 5 1 2 1 3 3 5 1 3 5 5 2 5
#> [10225] 3 3 3 5 5 1 3 1 5 4 3 5 1 3 1 1 4 1 4 1 5 3 3 3 2 3 2 1 1 3 5 1 1 3 1 4
#> [10261] 1 3 1 3 3 4 3 3 1 3 5 2 2 1 3 3 1 5 1 1 3 5 4 5 3 1 2 3 4 3 3 5 3 1 3 4
#> [10297] 4 5 1 5 3 1 2 2 3 4 5 5 3 1 2 5 1 4 1 2 3 3 1 3 4 3 2 1 3 3 1 3 4 3 3 4
#> [10333] 2 1 3 1 3 1 2 3 1 3 2 5 4 3 3 3 3 1 3 1 3 4 3 2 1 1 3 3 3 2 3 3 3 1 3 5
#> [10369] 3 5 5 5 3 5 4 3 3 1 3 2 5 3 3 4 4 3 3 1 3 3 3 3 3 3 5 4 3 2 1 5 1 2 4 1
#> [10405] 1 5 2 4 5 3 1 1 3 3 1 2 4 3 5 2 2 2 1 1 5 5 1 3 2 4 3 5 4 4 3 4 3 5 4 2
#> [10441] 3 3 1 5 3 5 3 1 2 1 3 3 1 5 2 3 3 2 3 3 1 2 5 1 3 3 3 1 3 5 1 3 3 3 3 5
#> [10477] 5 5 4 1 1 4 3 5 3 5 3 1 5 4 2 1 5 3 4 1 2 3 1 1 2 1 4 2 3 3 2 3 3 3 3 3
#> [10513] 3 4 3 2 3 1 3 2 3 1 4 5 4 3 4 1 3 5 1 2 3 3 3 5 1 2 1 2 5 1 5 1 5 3 3 1
#> [10549] 5 3 1 3 4 2 4 5 3 1 3 4 3 1 3 3 1 1 3 3 1 3 3 5 4 1 2 1 1 3 3 2 3 3 4 3
#> [10585] 4 1 3 3 3 4 3 5 3 3 2 3 3 1 4 2 3 3 1 1 1 5 5 5 2 4 3 3 2 1 3 4 5 5 1 3
#> [10621] 3 1 3 1 1 5 1 1 3 5 4 1 1 4 5 3 4 1 5 3 5 2 1 3 5 1 2 3 5 4 5 3 1 1 1 4
#> [10657] 1 2 4 3 1 2 3 1 5 1 3 1 4 3 4 3 3 4 5 2 4 3 2 2 2 1 4 3 1 4 3 3 1 4 3 5
#> [10693] 4 5 3 3 4 1 2 3 3 1 1 3 1 5 3 4 1 1 3 5 5 3 3 4 3 5 3 2 2 5 2 4 1 5 3 3
#> [10729] 4 3 2 3 1 3 3 2 5 1 4 3 3 3 3 2 1 3 1 5 3 4 1 5 3 1 3 2 2 2 5 3 1 1 5 5
#> [10765] 3 3 3 3 1 1 3 4 4 1 5 2 3 5 3 3 3 1 4 1 2 3 1 2 1 2 1 4 2 2 3 2 3 4 3 5
#> [10801] 3 3 3 3 5 4 1 5 3 1 3 4 5 4 1 3 1 4 5 1 2 5 5 3 3 1 2 5 3 3 4 5 3 3 1 3
#> [10837] 1 1 3 3 5 2 5 3 3 3 3 4 4 5 1 3 5 5 5 5 3 3 1 5 3 3 3 3 3 3 3 3 2 3 4 2
#> [10873] 5 4 3 4 3 3 3 3 2 5 3 3 3 1 1 3 4 1 3 1 2 3 1 3 3 2 1 1 2 2 5 5 2 5 3 3
#> [10909] 4 2 1 5 1 3 3 1 2 1 3 1 2 5 2 3 3 2 1 3 3 5 3 1 1 5 5 3 4 1 1 5 2 3 5 1
#> [10945] 5 1 1 4 1 5 5 3 3 5 3 4 3 1 1 1 4 1 3 3 3 5 3 1 1 2 3 2 1 4 2 3 1 3 4 5
#> [10981] 2 1 1 4 1 4 3 3 1 5 1 4 1 5 5 2 5 4 1 1 3 4 3 3 5 3 1 3 1 3 5 3 3 1 3 4
#> [11017] 3 5 2 5 5 3 3 2 1 3 4 3 3 3 2 1 1 2 1 1 3 1 4 3 1 2 3 3 1 5 4 3 3 2 3 3
#> [11053] 3 5 4 3 1 5 5 1 3 4 5 2 1 4 2 2 3 3 1 1 2 1 1 5 5 4 1 3 3 3 3 3 4 5 3 3
#> [11089] 3 3 3 4 5 5 1 1 3 3 3 1 5 2 1 5 2 5 4 3 2 5 5 2 1 3 3 3 1 1 3 1 3 1 2 3
#> [11125] 3 2 5 5 3 3 4 1 4 1 3 3 2 3 5 2 3 4 3 4 2 4 4 3 3 4 5 2 3 3 1 5 3 4 3 5
#> [11161] 3 4 3 5 1 2 5 4 5 2 3 4 1 4 4 5 1 3 3 3 3 1 3 5 3 2 5 1 1 3 5 4 5 3 5 1
#> [11197] 3 1 3 3 4 5 5 1 1 2 3 1 1 3 1 3 1 3 3 3 3 3 3 4 1 3 1 1 1 3 3 4 1 5 1 3
#> [11233] 1 1 1 3 5 1 5 3 3 3 2 3 2 5 3 5 5 1 3 4 3 3 2 1 1 3 3 3 1 4 1 3 4 2 3 2
#> [11269] 4 5 3 3 1 3 3 1 2 4 4 4 5 4 1 3 5 5 5 4 5 3 1 3 3 4 3 5 3 5 3 2 2 5 5 3
#> [11305] 1 5 1 5 1 2 2 3 3 1 3 5 3 4 5 5 5 3 1 3 3 5 2 5 3 3 1 2 5 4 3 1 5 1 4 1
#> [11341] 2 4 1 1 2 1 3 3 1 3 3 3 3 3 3 4 3 5 2 3 5 3 3 4 3 1 4 4 2 5 3 5 1 5 5 3
#> [11377] 1 2 3 2 1 3 1 1 3 1 5 3 2 2 4 3 1 5 3 3 5 3 4 3 3 5 4 3 2 3 3 3 1 5 2 3
#> [11413] 3 2 1 5 1 4 5 5 2 1 3 3 1 1 3 3 1 3 4 5 5 3 1 1 1 1 1 3 3 1 2 1 3 3 5 1
#> [11449] 3 3 3 3 3 1 3 5 3 1 4 4 3 5 3 1 4 5 1 2 5 3 1 1 4 3 3 2 3 5 5 4 4 1 4 1
#> [11485] 4 4 5 4 3 3 1 5 3 1 1 5 3 3 3 4 5 3 5 1 5 2 3 2 3 3 2 5 2 3 1 1 3 4 3 2
#> [11521] 3 3 1 5 5 5 1 3 5 2 5 1 5 5 4 1 1 3 1 3 5 3 4 5 3 2 3 5 3 1 3 4 3 3 1 5
#> [11557] 1 3 3 2 3 3 2 5 3 4 3 1 1 2 5 5 1 5 1 2 3 1 5 3 5 3 4 3 3 4 3 5 1 3 5 3
#> [11593] 1 3 3 5 5 1 3 3 3 4 3 1 3 3 3 2 3 1 1 2 3 3 4 3 2 2 5 1 5 2 3 3 1 3 4 3
#> [11629] 2 1 3 3 2 3 4 3 3 3 1 3 3 3 1 1 1 4 2 4 1 2 1 5 3 3 3 4 4 2 1 5 2 3 2 1
#> [11665] 3 3 4 3 5 2 3 5 5 5 4 1 3 5 5 1 5 3 3 4 1 2 1 3 5 3 1 3 3 4 2 3 3 1 2 1
#> [11701] 4 3 3 3 4 1 3 3 3 3 1 3 3 4 3 5 5 4 5 4 5 4 4 4 2 4 3 1 5 1 1 4 5 1 5 5
#> [11737] 3 1 5 3 4 1 3 3 3 3 3 1 3 3 4 1 1 2 4 3 2 3 3 3 1 5 3 3 1 4 2 3 4 3 3 4
#> [11773] 3 3 1 3 2 3 3 3 1 1 1 3 4 3 1 1 2 1 1 1 4 1 3 3 2 1 1 5 3 1 5 3 5 2 1 3
#> [11809] 1 3 3 3 3 2 2 5 3 3 2 3 1 4 1 5 5 3 3 2 1 4 3 5 3 4 1 1 3 1 5 1 5 1 5 5
#> [11845] 5 5 4 5 3 4 3 3 5 4 1 5 5 2 3 3 1 1 5 5 3 3 3 2 3 4 3 1 5 2 3 3 1 3 3 3
#> [11881] 3 3 1 5 2 5 1 2 1 3 3 3 3 3 4 3 3 2 3 5 1 3 3 2 3 2 1 5 5 1 3 3 1 3 5 3
#> [11917] 3 3 2 3 1 5 3 3 5 5 2 4 1 1 3 3 1 3 1 3 3 2 3 2 5 3 5 5 5 3 3 5 3 1 3 3
#> [11953] 3 3 5 3 5 5 5 3 3 3 1 3 3 5 1 5 5 5 5 1 3 3 2 1 3 3 3 2 5 2 5 2 5 1 2 1
#> [11989] 5 1 5 3 3 2 1 5 3 3 2 1 3 3 5 3 3 1 2 1 3 5 3 1 3 4 3 5 3 4 3 1 1 3 3 3
#> [12025] 3 3 3 1 1 3 1 2 4 3 5 3 4 3 3 3 1 2 1 4 1 3 2 5 3 5 5 4 3 3 2 1 4 3 4 1
#> [12061] 2 5 1 2 5 3 3 4 4 1 3 2 4 1 5 2 3 1 4 5 5 3 3 3 3 5 2 4 1 5 2 3 5 3 2 3
#> [12097] 4 1 5 3 4 3 4 1 3 3 3 3 4 2 3 1 3 2 1 2 5 5 3 3 3 3 3 1 5 5 3 1 3 2 1 1
#> [12133] 1 1 3 3 3 1 2 3 3 5 5 4 2 3 3 2 3 2 2 3 3 3 1 5 3 2 1 2 4 1 1 3 4 1 4 1
#> [12169] 3 3 1 5 2 5 5 5 4 3 2 2 5 5 3 1 2 1 5 2 4 3 3 3 3 5 4 2 1 3 3 4 1 3 3 3
#> [12205] 5 3 5 1 1 3 1 1 1 2 3 1 1 2 5 4 3 5 5 4 3 3 4 2 4 4 1 3 1 3 4 5 5 2 1 3
#> [12241] 5 5 4 3 3 3 5 1 3 3 5 2 2 5 3 5 3 2 3 1 2 1 1 2 5 3 3 4 3 1 2 3 3 3 4 3
#> [12277] 3 5 3 5 3 1 2 2 5 1 4 1 5 3 5 3 1 3 3 3 3 5 3 4 1 2 3 3 4 3 3 5 4 1 4 3
#> [12313] 2 4 5 1 2 1 4 1 1 5 3 1 1 2 4 4 3 1 3 3 5 5 5 1 4 1 3 1 3 3 5 1 4 3 1 1
#> [12349] 4 3 5 1 1 3 5 1 2 1 3 5 2 5 5 2 3 1 3 3 1 3 3 2 3 2 1 1 3 4 3 3 1 2 1 5
#> [12385] 5 4 1 3 1 3 2 2 5 5 5 3 2 4 5 4 3 5 3 5 5 5 4 3 2 3 1 3 3 3 3 2 2 3 5 1
#> [12421] 5 3 5 1 2 3 1 5 3 3 3 2 1 3 1 1 4 3 3 1 3 2 2 3 5 5 1 5 1 3 5 3 4 4 5 5
#> [12457] 4 2 3 4 2 1 3 3 3 1 5 5 2 3 3 3 3 3 1 5 1 1 1 3 5 3 2 1 3 5 2 1 3 3 1 3
#> [12493] 1 3 3 3 4 3 1 5 4 4 5 1 3 4 5 3 2 3 5 5 1 3 3 3 1 4 3 3 1 1 1 5 3 1 3 3
#> [12529] 3 1 3 5 3 1 2 3 4 3 3 1 5 1 3 4 3 3 3 3 1 3 3 3 5 1 4 3 5 1 2 3 2 4 3 1
#> [12565] 4 3 1 4 5 4 1 1 3 1 3 4 5 2 5 4 3 2 3 2 1 5 1 4 1 5 4 2 3 2 3 2 3 3 4 3
#> [12601] 3 1 1 4 4 2 1 4 3 3 2 3 3 3 3 3 1 3 3 2 3 3 3 1 3 5 4 3 5 3 3 3 4 3 3 1
#> [12637] 3 5 2 4 3 3 1 5 2 3 3 3 2 2 5 5 1 1 3 3 5 1 3 2 1 1 3 3 5 3 2 1 3 5 3 5
#> [12673] 2 5 3 3 3 4 1 5 4 3 2 4 2 3 4 1 4 2 1 3 2 1 5 2 3 1 5 3 3 3 3 1 1 4 5 2
#> [12709] 2 5 1 3 3 1 1 5 3 1 5 3 1 2 1 1 3 5 3 5 2 5 1 3 3 3 5 3 3 5 5 3 3 4 4 3
#> [12745] 2 1 3 4 3 3 4 3 5 1 5 4 5 3 5 5 4 1 5 4 3 2 4 3 1 5 3 2 5 4 1 3 3 5 5 5
#> [12781] 3 2 5 3 3 1 3 5 3 5 1 3 5 3 2 1 1 3 3 3 2 1 3 4 3 5 3 2 4 5 5 1 1 5 4 1
#> [12817] 4 5 2 2 1 2 3 1 1 2 5 2 1 1 3 3 3 3 4 4 2 4 3 1 3 3 2 3 4 4 1 5 2 3 5 2
#> [12853] 2 2 1 5 3 4 5 2 3 3 5 3 2 2 2 3 1 5 2 3 1 5 2 5 4 4 3 2 1 3 2 5 3 3 3 4
#> [12889] 3 1 3 1 2 3 3 1 1 1 3 1 1 1 1 3 5 1 5 3 2 3 3 3 3 3 4 1 4 3 3 3 3 1 3 3
#> [12925] 1 3 5 1 3 3 5 1 3 5 1 3 3 4 5 5 3 5 2 4 3 2 3 2 1 3 3 1 3 3 3 4 3 3 1 5
#> [12961] 5 1 1 1 2 5 5 3 4 1 2 3 3 2 3 3 1 3 1 3 5 3 3 3 3 5 5 3 1 5 4 1 3 3 5 2
#> [12997] 1 5 3 2 1 1 2 1 3 3 3 3 3 5 3 1 5 1 5 3 3 5 2 5 1 1 3 5 3 3 1 3 3 3 4 3
#> [13033] 3 3 3 3 1 5 5 4 3 3 1 3 5 4 3 3 1 3 1 1 4 3 2 2 3 3 3 3 3 3 3 3 5 2 1 5
#> [13069] 2 1 2 1 5 2 3 3 1 3 5 3 4 2 1 3 1 4 3 1 5 3 2 4 2 3 4 3 3 5 3 3 3 2 3 5
#> [13105] 1 1 5 3 1 1 1 3 3 2 5 2 1 2 3 4 3 3 4 4 3 5 3 2 5 3 5 5 3 1 3 5 2 5 3 3
#> [13141] 5 2 1 5 5 5 4 3 2 3 4 4 5 3 3 1 5 5 3 5 5 5 2 1 4 4 2 3 3 3 5 3 1 3 5 1
#> [13177] 3 2 5 4 5 1 5 4 5 3 4 3 3 3 3 3 3 2 2 1 1 3 2 2 1 3 3 1 2 1 2 4 1 5 3 5
#> [13213] 3 5 3 2 5 1 5 4 1 3 1 5 3 1 3 2 1 3 4 3 4 4 4 2 4 3 1 3 2 4 5 1 5 3 2 1
#> [13249] 4 1 5 3 4 3 1 2 3 5 1 5 5 1 4 5 3 3 3 1 1 2 4 2 3 5 2 3 3 5 5 3 3 4 5 3
#> [13285] 4 1 5 2 2 2 2 3 3 2 3 5 5 4 3 2 3 3 5 3 4 5 5 3 3 3 5 1 1 1 3 1 1 2 2 3
#> [13321] 1 4 3 5 3 3 3 4 3 2 1 2 5 5 3 5 3 5 1 3 3 3 5 3 5 5 1 4 2 5 2 1 3 3 4 5
#> [13357] 3 1 2 2 5 3 4 5 5 1 5 5 4 3 4 4 4 4 3 1 2 3 3 4 1 3 3 3 3 3 5 3 5 5 1 5
#> [13393] 3 3 3 5 2 2 3 4 5 3 1 4 1 1 5 5 4 5 1 5 3 3 2 1 3 3 2 1 5 5 1 4 3 1 2 2
#> [13429] 3 3 3 4 5 3 5 3 3 3 3 1 3 4 3 3 3 2 2 4 3 3 1 3 2 3 2 4 1 5 1 5 1 3 5 1
#> [13465] 1 3 1 3 3 3 3 5 3 3 1 4 3 1 4 2 3 3 1 3 3 3 3 3 1 1 1 3 4 1 3 1 3 3 5 1
#> [13501] 3 5 3 5 3 3 4 5 5 5 3 3 3 4 3 3 5 1 3 4 1 3 3 3 4 4 1 5 3 3 1 1 2 1 3 3
#> [13537] 5 1 3 2 3 3 3 5 1 4 5 5 2 2 3 3 5 3 3 3 5 3 2 5 3 2 3 1 2 1 4 3 2 3 2 3
#> [13573] 5 4 3 2 1 5 1 3 5 4 3 1 3 4 3 3 1 1 3 3 3 5 5 1 1 5 1 3 3 1 5 3 1 2 5 5
#> [13609] 3 1 3 3 3 3 1 1 4 2 2 3 1 2 1 3 3 1 3 3 3 1 1 1 1 1 3 2 3 3 3 1 1 3 3 4
#> [13645] 5 3 5 3 3 1 5 5 2 2 4 1 3 4 3 3 3 3 3 5 1 3 5 3 2 5 3 3 3 3 2 3 3 3 3 4
#> [13681] 1 1 4 3 1 2 3 1 3 1 5 3 1 5 2 4 3 3 4 3 5 3 1 1 5 3 4 3 4 4 3 1 3 2 2 5
#> [13717] 1 3 3 2 1 4 1 4 1 3 3 5 1 3 3 1 3 4 3 3 3 1 1 4 3 3 1 1 5 2 2 3 3 4 4 5
#> [13753] 3 5 1 3 3 3 1 5 2 1 3 3 5 4 1 3 2 5 5 1 3 3 4 3 1 2 2 5 2 3 3 5 4 2 5 1
#> [13789] 3 3 3 1 3 1 3 2 2 3 3 3 3 3 5 5 3 3 3 1 2 5 1 5 1 3 3 3 4 1 2 3 3 2 2 3
#> [13825] 2 3 1 1 3 3 5 1 3 4 3 5 1 5 1 5 4 4 3 5 4 3 2 1 5 1 3 1 1 5 3 4 3 5 3 2
#> [13861] 3 2 3 2 1 2 4 1 1 5 3 1 3 3 4 5 3 3 2 1 1 3 4 5 3 3 1 5 4 3 1 3 3 3 3 5
#> [13897] 2 5 2 3 5 4 3 1 1 3 5 4 1 3 3 3 2 2 3 2 4 5 3 3 5 2 3 5 3 3 1 4 1 3 1 3
#> [13933] 1 1 2 3 3 1 2 5 5 1 5 1 3 3 1 1 2 3 3 3 3 3 3 3 1 4 2 1 5 3 2 5 1 1 1 3
#> [13969] 3 2 3 3 3 3 4 1 3 3 4 5 1 2 1 3 2 1 3 3 3 3 2 5 1 3 1 3 2 5 2 5 4 4 4 4
#> [14005] 3 4 3 4 5 3 5 4 2 1 3 4 2 5 1 3 2 3 3 5 4 4 1 1 4 5 3 1 1 3 3 2 1 2 3 1
#> [14041] 3 2 3 2 2 3 1 5 5 3 1 2 1 2 4 1 5 5 1 3 3 4 5 3 2 2 3 3 1 1 3 3 1 3 3 3
#> [14077] 3 1 3 3 5 5 5 5 4 3 1 1 3 5 3 3 4 2 3 3 2 3 3 2 1 3 1 1 4 3 3 3 1 4 5 1
#> [14113] 4 3 3 3 1 3 2 1 3 1 1 1 3 3 3 5 5 1 4 1 2 3 3 5 3 2 5 3 2 1 3 3 5 5 5 2
#> [14149] 1 5 5 2 3 3 3 5 4 1 3 2 3 3 2 1 2 3 3 5 4 1 3 1 2 3 1 4 5 2 3 3 3 4 3 3
#> [14185] 2 3 3 5 4 4 2 5 4 1 2 3 3 1 1 2 3 2 3 3 5 3 4 3 3 2 5 5 5 5 4 2 2 1 3 3
#> [14221] 4 3 2 3 1 3 3 1 1 3 3 5 1 2 3 1 2 2 2 5 1 3 4 3 5 5 3 3 3 5 1 1 5 3 1 1
#> [14257] 4 3 5 2 5 3 3 3 5 3 2 5 3 3 2 5 3 5 5 3 3 4 2 3 3 2 3 2 2 5 1 2 1 2 3 3
#> [14293] 3 1 1 2 3 2 3 2 3 3 2 3 5 3 2 2 4 1 4 5 2 5 5 5 3 3 3 2 3 3 3 3 3 1 1 1
#> [14329] 3 5 3 3 3 3 3 2 3 3 3 2 3 1 4 3 2 1 3 2 5 3 5 2 3 1 1 3 5 3 2 3 5 5 1 1
#> [14365] 3 2 2 5 1 1 3 5 3 4 5 4 5 3 5 2 3 2 1 5 3 2 4 3 2 3 5 3 4 5 3 5 3 2 1 3
#> [14401] 4 3 2 5 3 5 1 3 4 3 3 3 1 3 4 5 1 1 4 1 2 2 1 1 4 3 5 1 1 3 3 3 4 3 4 3
#> [14437] 4 5 3 3 2 1 1 3 3 2 3 3 4 4 5 3 1 3 3 3 2 3 4 5 2 1 3 3 3 3 3 2 3 3 4 3
#> [14473] 3 1 3 3 2 5 3 3 3 3 3 2 3 3 1 3 2 3 3 1 4 3 1 4 5 3 2 1 4 3 5 3 5 1 3 2
#> [14509] 2 3 2 5 1 4 4 3 2 3 3 1 3 3 4 3 2 3 3 3 1 2 5 5 1 1 2 5 1 3 3 2 2 1 1 2
#> [14545] 3 4 2 1 3 1 3 5 3 1 3 3 3 1 2 3 3 3 1 4 3 2 3 3 3 5 2 1 3 3 3 3 1 3 3 3
#> [14581] 5 1 1 5 3 3 2 3 1 3 1 1 5 3 1 5 1 4 3 1 1 4 4 2 3 2 4 1 3 1 3 5 3 5 5 4
#> [14617] 4 2 1 5 3 5 5 1 1 3 3 1 3 3 3 1 1 3 3 3 5 2 3 5 4 5 3 5 5 3 4 3 4 1 3 5
#> [14653] 3 1 5 1 3 3 2 1 2 1 1 4 1 1 5 2 1 2 3 2 1 3 3 3 4 2 3 3 1 3 5 5 2 5 3 2
#> [14689] 1 4 1 3 4 3 1 1 1 2 3 2 3 5 5 5 1 2 5 1 1 1 4 3 2 1 5 3 3 2 1 1 3 5 3 5
#> [14725] 5 5 5 5 5 1 2 5 4 3 2 1 3 3 3 3 3 3 2 5 3 4 3 1 5 3 1 3 3 1 3 3 1 3 4 3
#> [14761] 4 1 1 1 1 3 1 3 3 4 1 3 2 5 5 3 3 2 3 3 3 5 5 1 4 3 3 3 3 1 4 4 5 3 5 3
#> [14797] 3 4 3 2 4 1 4 3 3 4 4 1 5 4 3 1 2 5 3 3 3 3 3 5 3 1 4 3 2 5 2 1 2 5 3 3
#> [14833] 3 3 3 3 4 2 3 2 3 1 3 3 1 1 2 5 2 5 3 3 2 4 1 3 1 1 5 1 2 3 2 1 3 3 1 3
#> [14869] 3 1 1 3 5 3 5 3 5 4 3 1 1 1 5 2 4 3 2 3 3 1 1 1 3 3 3 2 4 3 1 3 2 1 3 4
#> [14905] 1 4 3 5 3 5 5 5 2 5 5 1 5 3 5 4 1 1 3 4 5 3 3 5 1 3 1 5 3 2 5 2 1 3 5 3
#> [14941] 1 2 1 2 3 3 3 3 3 1 5 5 4 3 4 3 4 1 5 3 3 3 1 1 3 2 3 3 3 3 5 2 4 3 2 3
#> [14977] 3 2 4 3 5 4 1 4 3 4 3 5 3 3 2 3 4 4 3 4 3 3 2 3 3 4 3 3 4 3 1 1 2 3 3 3
#> [15013] 3 2 2 1 1 1 3 3 5 3 5 1 1 3 3 1 3 3 3 4 1 2 5 3 3 2 5 1 5 1 1 3 3 4 4 4
#> [15049] 2 3 5 3 1 3 2 4 4 3 5 1 3 3 2 3 4 3 1 2 4 3 1 1 4 4 2 3 1 2 3 1 3 3 1 5
#> [15085] 4 5 4 5 2 2 2 3 3 2 5 4 5 2 3 3 2 3 3 1 4 3 1 3 2 3 1 1 1 3 3 1 5 1 1 4
#> [15121] 2 3 4 3 5 2 3 1 3 2 3 1 2 5 1 3 3 1 1 1 1 2 3 3 3 2 3 1 3 3 3 3 2 4 5 3
#> [15157] 1 2 1 2 1 1 5 5 3 2 2 1 3 3 3 2 1 3 2 1 1 1 2 2 3 1 1 4 3 4 1 2 3 5 3 3
#> [15193] 3 5 3 3 1 3 5 4 3 3 1 3 1 3 3 4 3 5 2 3 3 2 4 3 5 3 3 5 3 2 1 3 5 3 3 5
#> [15229] 1 5 1 2 2 1 4 1 4 3 5 4 3 3 2 3 3 3 3 3 2 4 3 5 5 1 1 3 1 2 1 3 4 2 1 3
#> [15265] 2 3 3 5 3 2 1 1 3 5 3 2 1 3 2 3 3 1 3 1 3 3 1 4 3 4 5 4 1 4 3 3 4 5 4 1
#> [15301] 5 3 2 1 3 1 1 5 1 2 1 3 1 3 2 5 5 3 1 1 2 2 3 1 3 3 3 3 1 3 3 4 2 4 3 3
#> [15337] 3 1 3 1 4 2 2 2 4 3 2 3 3 2 2 4 3 3 5 1 3 4 5 1 1 2 1 3 5 4 2 3 5 4 3 5
#> [15373] 3 1 4 3 3 2 1 2 3 3 5 2 1 1 3 3 3 2 5 5 2 3 5 3 3 3 1 2 3 2 1 4 3 5 1 3
#> [15409] 2 1 2 1 3 3 2 4 3 4 3 5 1 1 5 3 1 3 1 5 3 1 5 1 3 3 1 1 5 3 2 1 4 5 3 3
#> [15445] 3 2 3 3 3 4 2 4 4 1 5 5 3 2 1 3 3 3 4 3 3 3 2 2 5 3 3 2 5 3 5 3 4 1 3 2
#> [15481] 3 3 2 3 2 5 4 5 4 3 5 2 2 1 4 5 4 4 3 5 3 1 3 3 2 1 3 3 2 1 3 3 1 2 5 5
#> [15517] 3 3 3 1 1 3 1 5 3 2 3 3 5 5 5 3 3 3 5 5 3 3 1 3 1 4 1 3 4 5 3 5 5 3 2 3
#> [15553] 3 5 1 5 3 5 3 2 2 4 3 3 3 3 3 1 3 3 3 3 3 3 3 1 3 1 1 1 3 1 1 3 5 1 3 1
#> [15589] 3 5 3 1 3 2 1 1 5 5 5 4 3 3 1 5 1 3 4 2 5 1 3 5 2 3 3 4 1 3 2 5 3 3 5 1
#> [15625] 2 3 3 3 3 2 3 3 1 3 4 1 3 1 3 3 3 1 1 5 3 2 1 1 4 3 1 5 3 1 3 1 1 4 5 3
#> [15661] 3 3 5 2 3 1 4 3 5 4 5 5 3 3 5 4 2 3 3 5 2 2 4 4 5 3 3 5 3 1 2 5 5 2 3 2
#> [15697] 1 2 5 3 3 1 3 2 3 3 3 5 1 3 3 3 4 1 3 4 1 1 4 2 3 3 4 1 1 3 5 5 4 3 3 2
#> [15733] 3 1 2 3 1 4 5 3 2 2 4 1 5 4 5 5 1 3 5 3 5 3 2 1 2 3 3 1 3 3 5 3 3 1 2 4
#> [15769] 1 5 1 3 3 3 1 1 3 1 1 1 1 1 5 3 1 5 5 4 5 5 3 4 5 3 1 3 3 5 3 4 3 3 2 4
#> [15805] 2 1 1 3 5 1 5 4 2 4 1 1 1 3 1 3 3 1 2 3 3 2 5 3 3 2 3 4 5 1 1 1 5 3 5 3
#> [15841] 1 1 4 2 5 1 3 4 1 3 2 4 5 1 3 3 3 4 3 3 5 1 3 2 3 5 2 1 5 3 5 1 3 3 1 1
#> [15877] 3 5 4 1 4 2 5 3 1 3 4 3 4 3 1 3 2 4 1 3 1 2 4 2 5 3 3 4 1 4 1 3 3 3 4 3
#> [15913] 3 3 3 5 4 3 1 2 3 1 2 2 3 1 3 4 3 2 2 1 5 5 3 4 3 5 5 5 2 3 3 1 1 3 1 2
#> [15949] 2 2 5 2 2 3 4 3 3 3 3 5 3 3 3 1 3 1 2 2 3 3 2 3 3 1 1 1 1 5 1 3 1 5 5 5
#> [15985] 4 2 1 5 5 5 1 3 3 3 2 5 1 1 5 4 1 3 4 2 2 1 5 4 5 3 4 2 3 2 3 3 4 3 5 4
#> [16021] 3 4 3 3 3 3 2 3 2 1 2 3 5 5 3 1 3 3 2 3 1 5 1 3 1 3 3 3 5 1 1 3 3 2 3 3
#> [16057] 3 5 3 3 2 5 5 3 1 1 3 2 3 2 4 4 5 3 1 4 3 3 3 4 3 1 2 1 4 5 3 5 1 3 2 2
#> [16093] 3 4 1 5 3 1 3 1 3 1 5 5 3 3 2 2 3 2 5 3 2 3 3 5 1 3 5 3 5 3 2 5 3 1 5 2
#> [16129] 1 3 3 3 4 4 4 3 3 3 5 1 5 1 3 5 3 5 2 3 3 1 1 3 1 3 3 2 1 4 4 5 5 4 4 5
#> [16165] 5 3 2 2 3 2 2 3 1 5 4 1 3 3 5 2 3 3 4 5 4 1 3 2 3 1 3 3 5 1 5 3 5 5 3 3
#> [16201] 3 1 3 3 1 3 2 5 3 5 1 3 2 1 1 3 3 3 3 1 3 3 5 5 1 1 3 3 3 3 2 3 2 3 1 2
#> [16237] 3 3 1 2 3 2 1 1 3 1 2 1 3 3 5 3 3 4 1 2 1 3 3 3 3 4 1 3 1 3 3 4 3 3 2 2
#> [16273] 1 1 4 5 3 5 2 4 1 3 1 2 3 1 3 3 3 1 2 5 3 1 4 1 1 2 5 3 3 5 1 3 2 2 5 3
#> [16309] 3 5 3 3 1 1 5 3 5 2 1 2 3 3 5 2 2 5 3 2 3 3 3 3 1 1 3 3 1 3 4 2 5 3 5 3
#> [16345] 3 3 5 4 3 1 1 3 5 2 3 1 4 3 1 3 3 3 3 1 1 2 3 5 3 3 2 5 3 1 1 3 3 3 1 4
#> [16381] 3 2 3 2 3 5 2 5 3 1 3 1 3 2 1 1 4 2 1 4 2 4 2 3 3 3 3 1 2 5 3 1 4 3 1 3
#> [16417] 1 4 3 1 3 3 1 5 5 3 2 3 3 1 2 3 3 3 5 2 5 5 4 5 5 1 1 3 5 2 2 2 1 5 1 2
#> [16453] 3 5 2 3 1 3 1 4 1 4 5 1 5 1 3 3 1 1 5 5 2 3 3 4 3 5 3 4 2 3 5 1 4 2 2 4
#> [16489] 1 4 3 2 3 1 3 3 3 5 3 3 3 5 1 1 4 1 3 5 1 1 5 5 5 3 2 3 5 4 3 3 5 3 3 3
#> [16525] 3 3 1 5 5 1 2 1 2 4 2 5 3 5 4 1 2 4 4 5 4 3 5 5 4 1 1 1 3 1 3 1 4 1 5 3
#> [16561] 1 1 3 3 5 1 1 3 3 1 1 3 2 4 4 2 5 1 5 3 2 3 3 2 2 3 3 2 3 4 1 4 3 1 3 3
#> [16597] 1 1 3 3 2 2 2 2 5 5 5 4 3 3 3 5 3 5 3 1 3 5 3 3 1 4 4 2 1 3 5 5 1 3 1 3
#> [16633] 3 4 3 1 3 3 3 3 3 5 3 1 2 3 3 4 3 3 4 1 3 2 1 5 3 3 1 4 2 3 5 3 3 4 4 3
#> [16669] 1 2 4 3 5 2 2 1 2 1 1 2 5 3 3 1 3 4 4 1 3 3 3 3 3 1 1 3 5 1 1 3 1 1 2 4
#> [16705] 3 5 2 2 4 3 2 3 3 1 3 3 2 1 3 3 2 1 1 1 5 4 3 1 3 5 3 1 4 3 3 3 3 3 4 2
#> [16741] 1 3 1 3 3 3 3 3 5 1 3 1 5 4 2 1 4 3 5 5 4 5 4 4 1 4 3 1 3 3 2 3 1 1 2 5
#> [16777] 3 5 5 1 1 5 1 5 1 3 3 3 5 4 2 4 2 2 3 1 3 1 5 5 3 3 3 3 2 3 3 1 2 2 3 3
#> [16813] 4 1 3 4 3 4 1 3 1 3 4 1 2 3 2 2 3 3 5 1 3 2 3 1 5 3 3 2 2 4 3 1 3 1 2 3
#> [16849] 3 2 3 3 1 2 2 3 2 5 3 3 3 4 3 1 1 3 1 3 5 1 2 2 1 5 2 1 4 3 1 4 3 5 2 3
#> [16885] 1 3 2 1 1 5 3 4 2 3 2 4 1 3 3 2 3 5 3 3 3 1 1 3 2 5 2 2 5 3 3 2 4 3 3 3
#> [16921] 2 3 1 3 2 4 5 2 2 3 3 3 3 1 3 1 4 1 5 3 3 3 3 1 3 2 3 5 1 1 3 4 1 2 1 1
#> [16957] 1 3 1 3 2 2 1 3 5 3 3 3 1 5 1 3 3 1 3 1 1 5 2 2 3 4 3 2 1 3 3 3 4 4 3 3
#> [16993] 3 5 4 2 1 5 3 5 3 3 1 3 5 2 3 3 5 3 3 3 1 2 3 3 3 2 2 3 3 4 1 4 2 3 3 2
#> [17029] 1 1 3 2 2 1 2 4 3 3 2 5 3 3 4 5 3 2 1 3 4 3 3 1 5 3 2 5 4 3 3 3 3 1 3 5
#> [17065] 2 3 2 5 2 5 3 2 4 3 5 3 5 4 5 3 3 1 5 3 4 3 3 1 4 4 3 5 3 2 1 1 3 3 5 2
#> [17101] 3 3 3 1 4 2 3 5 3 3 2 5 2 2 5 1 2 3 1 3 2 4 3 1 4 5 3 1 3 3 1 4 4 3 5 2
#> [17137] 3 5 5 3 3 3 3 4 1 3 2 2 5 3 5 4 3 3 1 3 5 3 5 3 3 1 3 1 4 1 3 2 1 3 2 5
#> [17173] 3 2 2 2 2 5 3 1 1 3 4 5 3 3 3 2 2 5 2 2 5 3 1 3 3 3 3 1 2 1 3 2 2 4 2 4
#> [17209] 1 5 3 5 3 3 1 3 5 5 3 1 4 3 3 5 1 1 5 5 2 3 1 4 4 3 1 4 1 1 1 2 4 2 1 5
#> [17245] 5 4 2 3 3 5 4 1 3 4 5 4 3 2 3 3 2 3 1 3 3 1 5 4 3 2 5 4 1 3 1 5 3 3 5 3
#> [17281] 3 3 2 2 3 4 4 1 3 1 5 3 2 2 1 5 3 3 5 2 3 3 1 5 3 3 1 5 3 5 4 1 3 2 3 3
#> [17317] 5 3 3 4 1 4 1 3 5 3 5 1 5 3 2 3 4 5 3 1 2 1 3 3 3 1 5 3 1 1 2 3 5 3 1 2
#> [17353] 5 2 3 3 5 1 5 3 1 3 3 3 3 5 5 3 3 3 1 3 3 5 3 2 3 4 3 3 3 4 3 2 4 3 3 1
#> [17389] 5 3 3 1 5 4 4 1 5 5 3 3 4 2 3 3 2 5 3 3 2 1 3 2 3 3 3 5 3 5 2 3 3 3 3 3
#> [17425] 5 4 5 5 3 1 1 5 3 3 3 2 4 3 5 3 3 2 5 5 3 3 2 3 1 3 3 3 1 3 3 3 3 3 2 1
#> [17461] 1 1 1 2 4 1 1 4 3 1 3 5 4 1 3 1 2 3 1 5 3 3 5 3 3 4 4 3 5 3 1 3 2 1 2 3
#> [17497] 3 3 3 1 3 3 5 2 2 4 3 5 3 1 5 1 5 1 4 5 5 1 3 1 3 1 5 1 3 1 5 5 2 3 1 1
#> [17533] 3 1 3 5 4 3 5 2 3 4 2 5 1 4 1 2 1 3 5 3 2 3 4 2 1 3 5 5 5 1 2 3 1 1 1 1
#> [17569] 3 1 3 1 3 2 3 4 4 1 1 3 3 5 4 3 2 3 1 3 2 2 4 4 1 3 2 4 3 3 3 1 1 1 5 3
#> [17605] 4 1 3 3 3 2 4 5 1 1 1 4 3 2 4 4 3 1 5 2 1 3 3 1 5 5 2 2 3 4 1 2 3 3 3 1
#> [17641] 4 4 4 1 3 2 2 3 1 5 5 3 3 5 3 3 5 4 3 5 3 5 5 1 4 1 4 5 5 3 1 3 1 5 4 1
#> [17677] 1 3 2 5 3 3 1 5 5 1 4 5 1 2 5 3 5 3 3 4 1 1 1 1 1 1 5 3 5 3 3 5 5 4 3 3
#> [17713] 2 3 3 1 4 2 5 3 2 1 1 3 3 3 3 2 3 2 3 1 3 4 1 3 2 1 1 1 5 4 3 1 3 1 5 3
#> [17749] 2 5 3 1 3 1 1 2 3 3 4 3 4 3 3 1 3 1 1 2 1 5 4 5 1 3 4 4 1 5 5 3 3 1 4 1
#> [17785] 5 3 5 2 2 4 3 3 2 1 1 2 1 3 3 3 3 5 3 1 3 3 5 3 3 4 3 2 2 2 3 1 4 3 2 2
#> [17821] 4 1 3 1 2 3 3 3 3 3 2 5 3 1 5 4 1 3 4 5 2 2 5 2 3 3 3 4 1 3 2 1 5 1 1 4
#> [17857] 1 1 5 1 5 3 3 3 3 5 3 2 5 3 1 3 2 3 3 1 5 1 5 3 3 2 5 5 1 3 3 3 3 3 4 1
#> [17893] 1 1 4 3 3 5 1 3 1 3 3 1 1 5 4 4 4 2 2 1 3 1 3 1 2 4 4 5 5 1 3 2 5 2 2 1
#> [17929] 3 3 4 5 5 3 5 3 1 3 3 2 3 3 1 3 1 2 5 5 2 5 2 3 3 3 3 3 3 5 3 1 3 3 3 1
#> [17965] 3 3 5 1 4 1 1 4 3 4 2 3 5 2 3 3 5 4 5 2 5 3 2 1 1 3 1 4 4 1 1 2 4 1 3 1
#> [18001] 3 5 2 3 1 4 1 3 2 1 4 1 1 2 5 1 5 1 5 3 2 2 1 3 3 2 3 4 4 4 2 5 5 5 3 5
#> [18037] 2 5 3 3 3 5 4 2 1 3 3 2 4 3 3 3 2 3 5 2 3 3 4 1 2 5 4 3 2 4 3 5 1 2 1 1
#> [18073] 3 3 3 3 1 2 4 5 5 4 2 3 5 3 1 1 5 1 3 3 2 1 3 5 3 1 4 3 4 4 3 5 3 3 1 2
#> [18109] 5 5 1 3 3 5 3 1 3 3 4 1 3 3 5 2 5 2 5 3 3 4 3 2 5 5 1 3 1 2 2 5 3 3 1 1
#> [18145] 3 2 4 3 4 3 1 5 1 4 5 3 3 4 2 5 4 5 4 5 1 1 5 2 1 5 1 4 1 2 5 4 3 3 2 1
#> [18181] 2 1 3 5 1 1 3 5 5 3 3 2 3 3 3 1 1 1 5 3 5 1 3 3 3 5 3 2 5 5 1 2 5 1 3 4
#> [18217] 3 5 3 3 1 1 3 5 3 1 1 5 4 3 1 5 1 5 1 4 3 3 5 1 1 1 3 3 1 5 3 3 3 3 5 1
#> [18253] 2 1 3 3 1 1 2 1 3 3 3 4 5 3 4 1 4 3 4 3 2 3 1 5 3 5 1 1 3 3 3 5 1 5 3 4
#> [18289] 3 2 3 4 3 5 2 2 2 2 1 5 4 1 3 3 5 3 5 3 1 3 5 3 1 1 1 3 3 3 3 3 4 4 3 3
#> [18325] 3 2 3 1 5 5 1 5 3 2 5 3 3 3 3 3 3 1 2 4 3 4 5 3 3 2 4 2 3 1 1 1 3 3 3 3
#> [18361] 1 2 3 1 5 3 2 3 1 2 1 1 3 1 3 3 3 4 1 5 2 2 1 5 2 3 3 1 1 3 3 5 2 1 1 1
#> [18397] 1 1 2 2 3 3 4 1 3 1 2 1 3 1 3 3 3 5 3 3 3 3 2 3 5 5 3 3 2 1 3 3 3 5 4 3
#> [18433] 1 1 1 3 3 4 3 3 4 3 3 1 2 1 4 1 4 5 2 3 2 2 5 2 3 3 4 5 3 3 3 4 3 4 3 3
#> [18469] 3 2 4 2 5 1 1 5 2 4 3 1 5 2 5 3 4 3 4 1 5 3 1 1 3 1 5 3 1 3 3 2 3 3 2 3
#> [18505] 1 3 5 3 5 1 1 3 2 3 2 2 4 5 3 1 3 5 3 3 1 1 4 2 3 4 1 3 1 3 4 1 4 2 3 3
#> [18541] 3 1 3 1 3 5 3 3 5 4 2 1 3 3 3 2 1 1 3 5 1 5 3 3 4 3 5 1 2 1 4 2 3 3 2 3
#> [18577] 3 2 3 1 2 3 3 2 3 5 1 4 5 3 4 3 3 1 1 3 3 3 3 3 2 5 3 2 2 3 5 5 3 2 3 5
#> [18613] 3 1 5 2 1 3 1 1 2 3 3 3 5 3 2 2 5 1 2 3 5 3 3 4 1 1 4 3 1 1 1 2 3 3 5 3
#> [18649] 4 1 3 1 5 1 4 5 4 3 3 5 3 5 2 3 1 2 2 3 1 5 2 2 3 5 5 5 3 3 5 1 3 2 1 2
#> [18685] 2 1 2 1 3 2 5 3 2 3 3 5 1 1 3 3 3 4 1 4 4 1 1 1 3 5 5 2 4 1 2 3 3 3 1 2
#> [18721] 5 4 3 1 4 3 5 1 5 1 4 5 2 3 5 3 3 5 4 3 3 1 1 3 5 3 5 5 3 2 5 1 3 3 2 3
#> [18757] 3 2 3 3 2 2 1 4 4 2 3 3 4 5 5 5 1 3 3 5 3 3 3 3 3 4 4 4 3 1 4 4 2 4 3 1
#> [18793] 5 2 3 1 3 1 3 1 3 4 3 2 3 3 2 3 3 5 5 4 4 3 3 4 3 4 5 1 5 4 2 3 1 2 3 1
#> [18829] 2 3 3 4 2 3 3 4 2 2 5 5 5 1 4 1 1 1 3 1 3 3 1 1 3 4 3 1 5 1 4 3 1 5 5 1
#> [18865] 5 1 2 5 1 5 5 2 4 1 5 5 5 3 4 1 3 5 3 4 4 1 5 5 3 1 3 3 3 3 3 5 3 3 5 3
#> [18901] 5 4 2 4 4 5 4 2 4 3 3 3 1 3 4 5 1 3 3 3 3 1 4 3 5 4 1 2 3 5 4 5 5 5 3 5
#> [18937] 3 2 4 5 3 3 1 2 1 1 3 4 2 3 1 3 1 3 1 5 2 5 4 5 3 3 1 5 5 5 3 2 4 3 5 2
#> [18973] 1 2 4 1 1 1 5 3 2 5 4 2 1 1 4 3 5 3 1 5 2 1 1 3 3 1 3 1 5 1 3 3 3 2 4 5
#> [19009] 5 1 3 3 4 3 2 5 3 2 1 1 4 1 3 2 1 3 5 5 5 3 1 3 3 1 3 1 1 3 3 3 1 2 3 3
#> [19045] 4 5 3 3 1 3 5 5 1 4 5 3 3 3 2 3 3 1 4 4 1 5 5 5 3 5 3 1 1 2 1 5 2 3 5 1
#> [19081] 5 3 1 2 5 3 5 3 5 5 3 1 4 2 2 5 2 3 2 3 3 1 3 4 1 3 1 5 2 4 3 3 3 3 5 4
#> [19117] 1 2 3 4 2 3 4 5 5 5 1 3 3 5 3 5 2 3 3 4 5 3 1 5 3 3 5 1 2 3 5 3 5 1 4 1
#> [19153] 1 4 3 4 4 3 1 1 3 5 1 3 5 3 5 1 5 3 3 3 3 5 3 1 4 1 3 3 5 1 1 5 4 4 4 4
#> [19189] 1 5 3 1 4 5 1 3 3 1 2 4 3 3 5 5 3 1 3 5 5 3 1 1 3 5 3 5 3 3 5 5 3 3 3 5
#> [19225] 3 2 2 2 3 1 3 1 3 5 4 2 1 3 1 1 5 2 2 3 4 1 2 1 3 3 3 1 4 2 1 3 3 3 1 3
#> [19261] 5 3 2 5 3 5 1 3 3 2 2 3 3 5 4 3 4 5 2 4 5 3 3 3 2 2 3 1 1 2 3 3 5 5 5 3
#> [19297] 3 3 2 1 2 3 4 5 4 5 3 3 3 1 3 3 3 1 5 3 3 3 4 2 5 3 4 3 5 3 1 1 2 5 3 3
#> [19333] 4 2 1 1 1 4 1 1 1 5 5 3 1 3 2 2 3 5 2 5 5 5 3 3 2 2 3 4 4 3 4 3 1 2 2 2
#> [19369] 3 1 3 3 4 5 2 5 3 3 3 1 2 3 5 3 3 3 5 3 2 5 4 3 3 2 3 2 1 2 3 1 5 4 3 3
#> [19405] 3 3 1 2 5 1 2 4 2 4 4 2 1 3 3 3 3 3 5 5 3 3 3 1 1 3 2 3 3 1 3 3 2 5 3 1
#> [19441] 3 2 3 3 3 1 3 3 1 2 3 2 3 5 1 1 3 3 5 2 5 2 5 1 3 2 3 4 1 5 1 3 2 2 3 3
#> [19477] 2 2 3 1 3 4 3 5 5 5 3 1 3 5 2 3 1 4 1 3 3 2 5 3 1 4 5 1 1 4 2 1 1 1 3 3
#> [19513] 1 4 1 1 1 3 1 3 2 3 3 3 3 5 4 4 5 3 5 3 3 1 3 3 1 4 3 1 1 3 3 5 4 2 2 4
#> [19549] 2 4 3 3 3 4 3 4 3 5 5 5 4 2 1 4 2 2 5 4 3 5 3 3 2 3 5 1 3 3 1 5 3 4 1 1
#> [19585] 2 3 2 3 1 1 3 3 1 5 1 1 3 2 3 4 1 4 3 3 3 3 3 3 3 3 3 1 5 1 3 1 3 3 3 5
#> [19621] 3 3 5 5 3 3 1 3 1 1 1 3 3 2 2 1 1 1 1 5 2 3 3 5 3 2 2 1 1 5 3 1 3 4 3 4
#> [19657] 3 3 1 2 1 2 1 5 3 1 2 2 1 3 3 4 3 5 3 3 3 4 1 1 3 3 3 3 5 3 3 3 3 2 4 1
#> [19693] 3 1 3 1 4 3 3 3 1 3 5 3 1 1 3 5 1 3 3 5 2 3 3 2 3 1 2 2 2 2 3 1 3 5 3 1
#> [19729] 2 5 3 1 4 2 1 2 4 2 5 5 3 3 4 3 3 3 1 3 1 5 1 4 5 1 3 1 2 4 5 2 3 3 3 1
#> [19765] 4 2 3 1 2 5 4 1 2 2 1 3 3 3 3 4 1 3 4 4 4 2 3 3 2 3 3 2 3 1 1 2 4 1 1 5
#> [19801] 2 1 3 3 1 3 3 5 5 3 1 1 3 5 4 3 3 2 1 1 5 1 1 5 5 2 1 3 1 3 5 3 3 4 1 3
#> [19837] 5 1 3 3 2 3 5 3 3 5 2 3 3 3 5 1 5 1 4 5 5 3 1 5 3 1 1 3 1 3 3 3 3 3 1 4
#> [19873] 5 2 4 4 2 1 3 3 3 4 3 2 3 1 3 4 3 3 4 5 3 2 1 1 5 1 1 3 5 2 5 1 1 1 1 3
#> [19909] 3 3 2 1 2 5 5 5 3 5 2 1 4 3 3 4 4 5 5 3 3 3 4 3 5 1 5 3 3 2 3 4 5 1 3 1
#> [19945] 3 1 4 3 1 2 2 3 2 1 3 2 1 2 2 3 3 3 1 2 5 1 3 1 5 3 1 5 3 5 3 3 2 5 1 3
#> [19981] 4 5 3 4 2 3 2 3 1 5 4 2 3 3 4 5 2 3 1 3 2 3 5 4 4 1 4 3 5 1 3 3 5 2 4 5
#> [20017] 2 2 1 3 1 5 1 5 3 5 3 3 1 1 3 3 2 1 5 2 5 3 4 4 1 4 3 3 3 5 3 3 4 1 3 3
#> [20053] 4 4 5 3 1 3 3 3 4 4 5 2 2 4 3 1 3 5 5 3 3 2 3 3 3 1 3 4 5 3 5 1 1 3 2 4
#> [20089] 5 2 3 4 1 3 1 3 2 3 4 3 4 2 2 2 4 2 1 5 3 3 5 5 2 3 2 1 3 3 2 3 3 1 4 1
#> [20125] 4 1 5 1 3 3 3 1 1 5 1 4 4 1 5 5 1 1 3 3 3 5 5 4 3 3 1 3 3 3 5 5 3 2 3 1
#> [20161] 4 3 5 1 5 5 1 3 3 3 3 4 3 1 1 3 3 3 3 4 1 5 3 3 1 3 3 5 3 2 1 3 3 1 1 4
#> [20197] 3 5 4 5 4 5 4 3 3 3 3 3 5 1 3 3 3 4 5 3 1 5 1 1 2 5 1 2 2 5 5 4 3 3 2 3
#> [20233] 3 1 4 5 1 3 4 3 3 3 1 3 5 4 3 3 4 5 5 4 3 2 1 5 1 4 3 1 4 3 1 4 3 3 3 3
#> [20269] 3 3 1 5 5 1 1 3 4 2 3 3 2 2 4 5 2 3 4 1 5 2 3 3 3 1 5 3 2 2 1 5 3 4 3 3
#> [20305] 3 3 5 1 5 2 2 5 3 4 2 4 1 5 4 5 3 3 3 3 3 2 3 5 1 3 3 4 1 3 2 1 3 3 4 3
#> [20341] 3 1 3 3 4 3 3 4 3 2 4 3 3 3 5 5 3 1 5 1 3 5 3 1 3 1 3 3 4 4 1 4 1 2 1 5
#> [20377] 3 3 3 4 3 4 3 3 5 3 3 5 3 1 4 5 1 4 5 5 2 5 3 2 3 3 2 3 3 2 2 3 1 1 5 3
#> [20413] 1 3 4 1 3 5 2 3 2 2 4 2 3 3 5 1 4 3 4 5 3 3 4 5 3 5 2 3 1 4 3 3 5 2 3 5
#> [20449] 5 3 2 4 2 5 3 4 4 1 4 3 5 4 1 4 3 2 2 3 2 3 2 1 1 2 3 3 3 2 4 5 1 2 2 3
#> [20485] 2 1 3 5 3 1 5 1 2 3 1 5 3 1 5 5 2 2 1 4 3 4 1 2 3 3 3 3 3 3 4 3 5 3 5 3
#> [20521] 3 3 3 1 5 1 3 4 4 2 2 1 4 2 1 1 4 4 1 3 3 5 4 3 1 1 2 5 5 5 2 1 3 5 5 5
#> [20557] 3 3 4 5 3 1 1 5 1 3 4 3 2 1 5 5 1 4 2 5 2 3 5 2 3 5 4 3 5 1 2 3 4 3 4 2
#> [20593] 1 2 2 5 2 1 3 2 1 3 5 3 4 2 3 5 2 1 1 1 3 2 5 3 4 2 2 5 1 5 4 5 1 3 2 3
#> [20629] 2 5 3 5 3 1 2 3 4 3 2 1 2 3 3 3 3 4 2 1 3 4 3 1 1 3 1 4 2 4 3 1 2 2 3 3
#> [20665] 2 3 5 5 4 2 3 3 3 2 4 3 4 2 3 4 3 5 2 3 2 3 3 3 4 3 3 2 5 4 1 3 2 1 4 3
#> [20701] 3 3 5 1 5 3 3 5 3 3 3 3 1 3 3 5 1 3 2 5 1 1 1 1 3 1 3 1 4 1 3 2 5 4 1 3
#> [20737] 1 2 1 3 3 4 3 1 3 3 5 5 4 1 2 1 5 5 3 3 1 5 3 3 3 3 1 2 5 3 1 5 3 2 2 5
#> [20773] 3 3 3 1 2 1 5 4 4 5 1 1 2 3 2 5 3 2 4 2 3 3 2 5 4 3 5 5 1 1 5 3 2 4 5 1
#> [20809] 1 2 2 4 1 3 3 5 5 3 5 1 4 3 4 3 3 4 3 5 1 4 3 1 2 5 2 1 5 3 4 3 3 5 4 5
#> [20845] 3 2 3 2 4 5 3 1 1 3 5 1 5 1 5 3 5 1 1 3 3 4 3 3 3 3 3 3 1 5 3 5 4 5 3 2
#> [20881] 3 3 3 3 3 3 5 1 1 1 2 3 2 3 2 5 3 4 1 4 3 3 1 5 3 2 4 4 2 3 1 3 4 5 1 3
#> [20917] 3 4 1 4 3 3 3 1 1 4 5 5 2 3 5 4 3 5 3 2 1 3 1 3 2 5 2 3 1 2 3 1 1 4 2 3
#> [20953] 3 3 2 3 4 3 5 1 5 1 3 3 2 2 3 2 1 1 3 5 2 4 5 5 1 1 1 5 5 4 1 1 3 3 5 2
#> [20989] 3 3 5 3 3 5 3 5 1 3 1 3 1 2 3 1 1 3 3 3 5 4 5 5 3 1 3 1 2 4 2 3 4 4 1 1
#> [21025] 2 3 5 1 3 3 4 5 1 2 2 3 2 5 2 3 3 4 2 3 5 2 3 4 2 4 5 3 2 3 3 3 3 2 2 5
#> [21061] 2 3 4 2 1 3 4 1 3 3 1 1 1 4 1 2 1 3 3 1 1 2 3 5 2 3 3 3 4 5 2 2 4 4 2 4
#> [21097] 2 3 1 2 1 2 5 5 4 2 1 4 3 3 3 4 4 3 3 1 3 1 3 4 2 2 5 3 3 4 3 1 3 5 2 1
#> [21133] 2 3 3 5 1 3 3 3 1 3 2 4 1 1 4 1 4 2 3 1 2 1 5 2 2 2 1 4 1 2 1 2 3 4 4 3
#> [21169] 3 3 5 1 3 3 3 4 5 5 3 3 5 3 1 3 4 3 3 2 3 3 1 3 3 3 3 3 3 5 5 3 4 3 2 5
#> [21205] 3 3 4 4 5 5 3 5 2 2 1 3 2 3 2 1 3 1 1 4 1 4 5 3 3 1 3 1 5 3 4 3 1 3 3 5
#> [21241] 3 3 4 2 3 2 1 3 1 3 4 1 4 1 3 2 2 3 4 4 4 2 4 1 2 1 1 3 2 5 1 5 3 1 3 5
#> [21277] 4 1 1 5 2 3 1 1 5 3 5 3 3 3 1 1 2 2 1 2 5 5 2 3 3 5 3 1 1 3 1 3 5 4 5 5
#> [21313] 3 3 1 4 2 3 5 4 3 1 4 1 3 4 5 3 3 1 2 1 3 3 1 5 3 1 1 3 3 5 4 1 4 1 1 3
#> [21349] 3 3 2 3 4 1 3 3 3 3 4 5 1 2 2 3 1 5 3 3 3 4 3 3 5 1 1 3 3 3 1 3 5 3 3 4
#> [21385] 3 5 4 2 3 3 3 2 3 4 4 5 3 2 3 4 3 1 2 3 2 4 1 5 5 1 4 3 4 3 1 3 3 3 5 3
#> [21421] 3 4 3 1 5 1 3 3 3 3 4 1 3 1 3 3 5 3 1 3 2 3 3 1 3 3 3 5 3 3 3 3 4 5 4 1
#> [21457] 2 4 3 2 5 3 1 4 5 3 2 2 3 1 2 5 1 4 4 4 1 2 4 2 1 4 2 2 3 5 5 3 4 2 4 4
#> [21493] 2 2 3 4 4 5 1 5 3 2 3 3 3 3 4 3 3 1 1 5 2 5 5 1 1 3 1 3 5 3 2 4 5 2 3 1
#> [21529] 2 2 5 1 2 1 2 4 5 5 4 4 4 3 1 3 4 4 3 3 3 3 5 1 1 2 2 3 3 5 3 5 5 1 3 4
#> [21565] 5 3 5 3 5 3 5 5 1 5 4 4 1 2 1 3 2 4 3 1 3 4 4 2 4 3 3 1 3 3 3 2 3 3 5 5
#> [21601] 1 3 4 1 4 1 2 1 3 3 5 1 2 3 5 1 3 3 5 3 3 4 3 3 1 5 4 1 2 1 3 4 5 5 1 1
#> [21637] 1 1 3 3 3 4 3 2 3 1 3 1 2 4 1 3 3 1 3 1 1 3 1 2 1 1 1 1 3 3 5 3 1 1 1 4
#> [21673] 3 1 2 5 1 5 3 1 2 3 5 4 3 3 3 3 3 4 4 3 3 2 2 1 2 3 1 1 3 5 5 5 2 3 5 3
#> [21709] 2 3 4 5 1 3 1 3 1 3 3 3 5 1 2 2 3 2 3 1 1 2 5 2 4 3 3 4 3 3 4 3 3 3 3 3
#> [21745] 1 5 1 2 1 3 3 1 1 4 3 4 2 2 1 3 3 2 3 3 3 2 3 4 2 3 5 4 3 3 3 1 5 5 3 1
#> [21781] 3 2 1 3 5 3 1 3 2 3 3 4 3 4 1 1 1 3 1 2 4 5 2 5 1 2 4 3 1 2 5 5 1 5 5 3
#> [21817] 3 2 3 4 1 3 3 2 3 3 3 5 5 3 2 1 5 5 1 3 4 3 3 3 1 3 3 5 1 3 3 5 2 5 4 2
#> [21853] 2 1 3 3 2 4 4 5 5 2 5 2 5 3 3 2 1 3 3 3 3 4 1 5 4 5 3 4 3 2 4 2 5 3 4 3
#> [21889] 3 3 5 4 2 2 3 2 3 5 5 5 2 4 5 3 5 3 5 2 5 5 1 3 3 5 1 3 2 2 5 1 5 3 3 1
#> [21925] 1 3 5 5 1 3 4 3 1 4 3 1 3 5 1 2 1 3 1 3 4 3 5 3 4 4 1 1 3 3 4 1 3 2 3 3
#> [21961] 3 1 5 3 2 1 1 2 3 3 2 5 5 2 3 4 1 2 3 4 1 3 4 2 3 3 3 1 5 5 3 3 5 1 1 3
#> [21997] 2 3 5 3 3 3 2 5 3 2 2 2 4 5 1 2 3 3 3 1 4 3 5 4 1 3 1 4 1 5 4 3 5 3 4 2
#> [22033] 1 3 5 2 3 3 2 1 2 1 3 2 4 5 3 5 1 3 1 2 4 2 2 3 1 3 4 3 5 2 2 1 3 4 2 4
#> [22069] 5 2 3 3 5 4 3 4 3 1 4 2 5 4 3 2 1 3 4 2 5 2 1 2 3 1 4 5 3 3 3 2 3 1 1 1
#> [22105] 4 5 1 5 1 5 4 2 5 4 5 2 3 1 3 5 4 4 5 2 4 3 1 3 3 4 1 4 3 2 4 4 3 3 4 3
#> [22141] 3 3 5 4 2 1 3 5 3 3 5 5 2 3 3 5 2 2 1 1 2 2 3 5 3 3 4 4 2 4 5 2 4 3 1 2
#> [22177] 1 3 5 2 4 2 3 5 1 3 2 4 4 1 1 1 1 3 5 1 3 4 2 5 3 5 3 5 5 5 2 5 1 3 5 3
#> [22213] 3 2 3 5 5 2 2 3 1 3 3 4 3 2 3 5 3 3 3 3 3 5 5 2 1 3 3 4 5 2 3 1 3 5 5 3
#> [22249] 1 1 1 5 3 1 2 3 2 3 3 3 5 5 3 5 5 5 2 3 3 5 1 3 5 1 2 4 2 1 5 1 3 2 3 1
#> [22285] 3 5 3 3 4 1 1 3 4 1 3 4 2 3 3 2 3 3 3 3 5 4 3 1 1 3 1 2 3 5 5 2 2 3 5 1
#> [22321] 2 3 4 3 3 3 2 1 3 2 3 5 5 4 4 3 3 3 3 5 3 5 3 3 3 3 3 4 3 5 3 2 4 1 4 2
#> [22357] 5 5 1 2 5 2 1 4 1 3 2 5 2 5 5 5 5 4 1 5 4 2 3 3 3 3 1 4 1 1 1 2 3 5 3 2
#> [22393] 1 3 1 1 5 3 3 3 3 2 3 2 1 3 2 1 1 1 3 5 1 2 3 5 5 1 3 3 2 5 1 5 3 3 3 3
#> [22429] 1 4 3 5 5 5 3 2 3 2 1 3 3 3 2 1 3 4 3 4 2 1 2 4 1 5 3 1 3 5 2 3 3 1 2 3
#> [22465] 1 4 4 1 5 1 3 1 3 3 4 4 3 3 3 4 3 4 2 1 1 1 3 2 5 5 1 3 3 3 3 3 1 5 4 3
#> [22501] 3 3 1 3 3 5 5 5 1 5 3 2 1 4 3 4 1 3 1 1 2 5 5 4 5 4 4 5 5 3 3 5 4 2 1 5
#> [22537] 5 3 3 3 3 2 1 3 4 1 4 3 4 3 3 1 3 2 5 3 3 3 3 5 3 5 2 5 5 5 1 1 1 3 5 2
#> [22573] 1 1 1 3 3 3 1 3 3 4 5 5 1 1 1 1 3 3 4 4 3 1 3 4 3 1 5 3 1 1 1 2 3 3 3 3
#> [22609] 4 3 3 4 3 3 1 2 4 2 1 5 5 5 5 2 3 1 1 2 1 3 3 3 3 1 3 3 4 3 3 3 3 5 4 3
#> [22645] 1 3 3 3 4 3 1 1 4 4 5 5 1 3 3 3 3 1 1 3 3 1 5 1 1 3 3 4 3 1 1 3 4 2 1 2
#> [22681] 1 3 1 3 1 1 4 5 2 5 3 5 3 1 1 5 3 5 1 3 3 3 1 5 3 3 1 5 3 3 1 1 1 4 3 3
#> [22717] 3 3 3 1 3 3 4 3 3 4 3 5 3 5 3 5 5 3 5 2 3 3 1 1 3 3 5 1 3 2 2 3 4 2 3 2
#> [22753] 5 4 1 3 3 3 1 3 2 3 2 3 3 2 3 3 5 3 1 1 1 2 3 1 3 5 2 2 3 3 2 5 3 5 1 5
#> [22789] 2 3 5 1 1 1 5 3 4 5 3 5 1 1 4 2 3 5 3 4 3 4 1 3 1 3 4 5 1 3 2 4 2 5 3 3
#> [22825] 2 1 1 3 1 1 3 4 5 1 5 2 3 3 5 4 3 1 2 2 1 3 2 3 5 5 4 3 3 2 4 1 2 2 1 3
#> [22861] 2 4 2 2 5 1 3 1 1 3 5 3 3 2 5 5 3 5 1 3 5 3 1 3 2 3 5 5 1 2 3 2 2 3 5 3
#> [22897] 3 5 3 2 3 5 1 5 4 3 5 1 2 4 3 5 3 3 2 3 3 1 5 3 2 2 3 2 2 3 2 5 4 1 5 2
#> [22933] 3 3 1 1 3 3 5 3 5 3 5 2 1 3 3 3 5 3 3 3 5 1 1 1 3 4 3 3 1 3 3 3 4 5 2 4
#> [22969] 1 1 5 2 1 1 3 2 3 1 1 1 3 1 3 1 3 5 3 5 3 5 4 3 1 3 1 3 5 1 3 2 3 5 1 4
#> [23005] 2 3 2 1 3 3 5 1 3 4 3 3 4 2 4 1 4 4 1 2 1 3 1 3 5 3 3 3 1 5 2 2 1 1 1 1
#> [23041] 5 1 4 3 3 3 3 3 2 5 5 3 1 3 3 5 3 3 1 3 3 2 5 3 3 4 3 2 3 1 3 5 3 3 1 3
#> [23077] 1 3 5 3 3 5 3 2 3 5 5 1 5 1 2 3 1 3 2 3 1 1 3 1 3 4 3 1 3 5 4 4 5 3 3 1
#> [23113] 3 1 5 4 3 1 1 2 4 3 5 3 5 3 3 2 2 2 1 5 3 2 3 3 3 2 3 1 2 1 3 4 5 2 4 5
#> [23149] 3 3 5 3 3 1 2 1 5 2 5 3 3 1 4 5 1 3 3 3 1 3 1 4 3 3 3 1 2 4 1 3 4 3 1 5
#> [23185] 1 3 5 3 3 3 5 4 3 1 2 3 3 2 1 1 1 4 1 2 3 2 3 5 3 3 2 3 3 3 2 5 3 4 3 3
#> [23221] 3 3 5 3 3 3 2 3 3 1 3 3 3 2 4 3 3 3 5 1 1 4 3 3 5 5 3 5 4 3 5 3 3 4 1 5
#> [23257] 3 5 3 3 3 5 1 2 3 1 5 3 1 3 1 5 3 4 3 4 3 3 3 1 3 3 3 3 5 2 1 3 4 1 1 3
#> [23293] 3 1 1 1 5 1 2 5 3 5 5 3 5 2 3 4 1 5 1 3 2 2 4 4 1 5 1 4 5 5 3 1 4 5 3 3
#> [23329] 5 4 1 1 1 3 3 3 1 3 5 2 5 1 4 2 1 2 3 3 1 3 3 1 2 3 5 3 2 4 2 2 2 4 5 3
#> [23365] 1 2 1 3 3 5 1 2 5 4 2 2 5 3 3 1 3 4 3 4 1 3 5 3 3 5 2 2 3 3 3 3 1 4 2 3
#> [23401] 5 3 3 3 5 4 3 1 2 3 3 3 1 3 1 3 2 1 3 5 2 5 3 5 5 3 3 5 4 3 5 5 3 1 2 5
#> [23437] 1 4 5 3 3 1 3 2 3 3 3 1 3 3 3 3 3 2 5 4 2 5 2 3 3 4 1 3 3 4 5 3 3 3 3 4
#> [23473] 5 5 3 3 3 2 3 3 5 2 5 3 3 5 3 1 3 2 2 5 2 5 3 1 1 3 3 2 1 5 5 3 3 3 1 1
#> [23509] 1 3 5 3 4 3 1 3 3 3 4 5 5 2 3 3 2 5 1 2 5 4 3 4 3 3 4 3 5 1 2 1 5 5 5 2
#> [23545] 3 3 5 3 5 3 2 5 2 3 2 2 3 4 1 1 3 4 1 2 4 5 1 3 5 1 2 2 5 5 1 3 3 1 2 4
#> [23581] 3 2 3 2 1 3 1 1 4 5 3 3 2 1 1 5 2 2 1 4 3 3 1 1 2 3 3 2 3 3 4 3 3 3 1 3
#> [23617] 3 1 5 3 1 2 5 2 1 3 3 5 3 1 1 5 3 2 4 1 1 1 4 5 1 1 3 2 1 3 3 1 2 1 3 3
#> [23653] 3 4 3 3 3 1 2 2 2 5 4 3 3 5 4 2 5 2 1 3 3 3 1 3 4 4 1 3 1 5 1 5 4 4 3 3
#> [23689] 3 4 2 2 1 4 3 3 5 5 2 4 2 3 3 4 3 2 2 3 1 3 2 4 1 3 5 5 3 4 2 3 3 3 1 1
#> [23725] 3 3 3 3 3 3 3 5 2 1 2 1 2 4 3 2 1 3 3 4 5 3 2 3 3 5 3 5 3 2 5 1 3 5 3 5
#> [23761] 3 4 4 3 5 4 5 4 2 3 5 4 1 1 1 3 5 3 3 1 1 3 3 1 1 3 1 1 3 3 5 3 2 3 3 3
#> [23797] 3 4 2 5 5 3 1 5 3 3 5 5 3 3 3 3 2 3 1 3 5 3 3 3 3 2 1 2 3 3 1 4 1 1 3 3
#> [23833] 3 1 3 5 1 3 1 1 5 1 3 2 1 5 5 3 2 2 2 3 2 1 4 3 5 1 4 4 3 4 3 5 3 5 3 5
#> [23869] 3 1 5 2 3 3 1 5 3 3 1 3 3 1 2 3 3 5 1 4 4 3 3 2 3 2 4 1 1 3 2 3 2 5 2 2
#> [23905] 2 3 5 1 4 3 3 1 3 1 3 3 4 3 5 5 1 3 4 5 1 3 5 1 1 2 3 5 1 2 1 2 3 3 1 1
#> [23941] 1 4 1 3 1 1 2 3 2 3 3 3 2 3 5 1 5 5 5 1 3 2 3 2 3 2 5 5 2 3 3 1 1 5 4 5
#> [23977] 2 1 5 4 1 1 1 4 3 3 3 2 1 3 2 5 3 3 3 1 3 2 3 5 5 5 3 2 3 4 1 4 5 3 1 1
#> [24013] 1 3 3 3 3 3 3 3 3 3 1 3 1 3 2 5 3 2 2 2 3 1 3 3 1 3 3 4 3 5 1 2 1 5 5 2
#> [24049] 3 4 4 1 1 4 4 4 4 2 3 3 4 1 3 3 3 2 2 4 3 5 1 3 3 1 1 4 3 1 3 2 4 1 1 3
#> [24085] 2 5 3 2 3 5 5 1 1 2 4 3 4 3 4 3 3 3 3 1 1 1 1 3 3 1 3 3 3 3 1 2 3 2 5 3
#> [24121] 3 1 2 2 3 5 5 1 4 2 4 3 1 2 1 5 3 2 5 3 1 3 3 4 2 5 2 3 3 3 1 5 4 4 3 3
#> [24157] 4 2 5 1 4 5 1 1 5 5 3 2 2 5 4 2 4 2 1 1 5 3 2 4 2 4 3 3 1 1 5 1 5 1 4 3
#> [24193] 1 1 3 3 4 2 4 5 3 3 4 1 5 2 5 3 3 3 2 5 5 4 5 4 3 3 5 5 4 4 3 4 4 3 4 4
#> [24229] 1 5 4 3 3 1 1 4 5 5 5 4 5 1 2 1 3 3 3 1 2 4 4 3 3 3 4 3 5 5 3 2 4 2 1 4
#> [24265] 3 1 3 3 2 3 3 3 3 4 3 3 3 3 4 5 1 1 4 5 5 1 5 3 4 3 1 1 3 1 3 1 3 3 3 4
#> [24301] 3 1 1 3 3 4 5 3 3 3 3 2 3 4 4 4 3 1 2 3 5 1 2 2 2 3 3 1 1 3 3 3 4 4 3 3
#> [24337] 1 3 3 1 2 3 3 3 2 1 2 1 3 1 2 1 4 3 4 5 3 5 4 3 1 1 3 4 1 3 5 1 5 3 5 2
#> [24373] 3 5 3 3 1 2 3 4 3 4 3 3 3 3 2 5 4 2 3 3 5 1 3 1 5 4 3 3 3 3 3 4 1 3 4 1
#> [24409] 3 1 1 4 5 5 3 3 3 1 4 3 5 5 3 3 3 5 1 3 2 1 3 3 4 5 3 1 5 4 3 3 5 5 2 1
#> [24445] 1 4 5 1 3 2 2 1 3 3 3 1 5 4 5 1 1 3 1 4 5 3 3 2 1 5 3 2 1 3 3 1 3 5 1 3
#> [24481] 5 3 3 4 4 1 1 4 3 2 1 2 4 4 3 2 3 1 1 2 1 4 1 3 3 5 3 3 1 4 4 2 3 4 3 3
#> [24517] 3 2 3 5 3 2 3 1 3 3 1 5 1 3 1 5 4 3 1 3 3 3 3 1 1 3 5 3 4 4 5 4 2 3 3 1
#> [24553] 3 2 3 5 3 1 3 3 4 1 3 2 5 5 3 2 3 3 5 1 1 1 3 5 4 3 3 1 4 1 5 1 3 4 1 3
#> [24589] 1 3 3 3 4 3 3 5 1 2 3 4 3 3 4 4 1 3 1 3 3 2 3 3 1 5 3 1 1 4 3 3 3 4 3 3
#> [24625] 1 3 3 3 3 2 2 1 5 5 3 4 3 3 4 3 1 4 3 2 5 1 1 4 1 3 1 3 3 2 2 2 1 1 4 3
#> [24661] 1 1 1 1 4 3 3 2 3 2 3 1 2 3 2 5 5 5 3 1 3 2 1 3 1 3 1 2 4 3 1 3 1 3 3 3
#> [24697] 3 3 1 1 3 1 5 1 5 1 5 5 1 1 3 5 3 4 3 3 5 5 4 5 2 2 1 2 4 2 1 3 3 3 2 5
#> [24733] 3 3 3 5 1 2 3 3 3 1 4 3 1 5 5 5 4 5 5 4 3 2 5 3 3 5 4 1 2 3 1 2 3 1 3 5
#> [24769] 2 1 2 4 3 1 3 5 5 4 3 5 3 3 4 1 1 1 3 2 1 3 1 1 2 3 2 3 5 1 5 3 3 5 2 2
#> [24805] 3 1 4 1 1 1 3 1 1 3 3 2 1 3 2 5 5 5 1 3 5 5 1 1 5 3 3 4 4 2 4 5 1 3 4 1
#> [24841] 4 4 2 5 2 1 5 5 5 5 3 5 4 3 5 3 1 1 3 3 3 3 3 2 4 2 1 1 2 4 1 1 5 1 1 1
#> [24877] 5 4 5 1 3 1 1 2 3 1 4 4 3 3 3 3 1 2 5 3 5 4 4 1 2 4 4 5 4 3 3 2 3 3 3 1
#> [24913] 1 3 2 4 1 1 1 1 3 1 4 2 4 5 5 3 2 3 5 5 3 5 3 5 3 3 4 3 5 3 5 3 5 1 1 4
#> [24949] 3 4 2 3 4 3 1 1 2 5 2 2 3 3 3 3 1 3 3 3 2 3 1 3 3 4 1 3 5 1 5 2 5 2 3 1
#> [24985] 3 5 1 3 4 5 1 3 2 5 3 1 3 3 2 2 1 3 2 1 1 5 5 3 5 1 3 4 4 3 3 2 2 3 3 5
#> [25021] 3 3 3 1 1 3 3 3 1 1 1 3 3 3 2 2 5 1 5 5 5 4 4 3 3 2 3 4 3 3 3 5 4 1 5 4
#> [25057] 3 5 1 3 1 1 3 1 4 4 1 4 1 3 3 3 3 2 5 1 1 1 2 1 3 1 1 3 3 4 3 3 2 3 1 5
#> [25093] 1 1 4 4 5 5 3 4 5 5 3 5 3 5 1 3 5 4 5 3 1 3 4 3 3 2 5 4 1 5 5 3 3 5 2 3
#> [25129] 5 4 3 4 1 3 3 4 3 5 3 4 5 1 1 4 4 3 1 1 3 3 2 2 1 2 3 2 3 1 3 3 5 5 2 3
#> [25165] 3 2 5 3 4 3 5 4 5 3 5 3 4 3 4 2 5 3 3 3 5 3 3 3 5 1 3 2 3 3 3 1 5 5 1 4
#> [25201] 5 3 4 4 1 1 3 2 3 5 3 3 5 3 3 1 5 1 3 4 2 2 3 3 1 5 1 2 4 3 3 4 3 2 4 5
#> [25237] 3 1 1 1 4 3 3 3 2 5 3 2 1 3 1 1 3 3 3 1 3 2 3 2 1 1 5 3 3 5 3 2 1 1 3 5
#> [25273] 3 3 4 2 1 3 3 4 3 3 3 3 3 5 4 2 3 3 5 1 3 3 3 3 3 4 1 5 5 4 5 3 1 1 3 2
#> [25309] 2 2 3 5 3 4 4 4 1 1 4 3 1 3 5 2 3 3 1 3 2 5 5 1 2 2 4 1 1 4 3 5 2 5 1 3
#> [25345] 3 3 4 4 3 3 3 1 4 3 3 1 3 3 3 3 3 3 2 3 3 1 1 1 3 3 1 5 5 5 1 3 3 5 3 3
#> [25381] 3 3 2 3 5 5 3 3 3 1 4 3 3 5 5 3 1 5 4 2 1 5 1 3 3 1 1 3 2 4 3 3 4 4 3 3
#> [25417] 5 2 3 5 3 1 1 3 1 4 3 5 4 5 4 1 2 1 3 1 1 3 1 4 4 3 1 1 1 4 3 5 2 1 1 1
#> [25453] 5 1 3 3 3 1 1 2 2 3 1 3 5 3 4 3 2 3 3 3 4 2 2 3 5 3 4 5 3 5 3 4 1 1 3 4
#> [25489] 1 2 3 5 3 3 1 3 2 3 3 2 5 4 3 1 3 3 4 4 5 3 4 5 5 4 1 3 2 3 5 4 3 2 5 5
#> [25525] 3 1 3 3 3 5 3 5 1 1 2 3 1 5 2 3 4 3 3 2 2 3 5 2 3 5 5 3 2 3 1 3 1 3 4 2
#> [25561] 5 1 3 1 4 5 2 1 5 5 5 3 2 1 1 3 5 5 3 1 5 5 3 1 1 2 5 2 5 5 3 3 3 3 5 2
#> [25597] 4 1 2 2 3 5 3 3 4 3 1 1 1 3 3 5 3 2 3 5 1 3 1 5 3 3 3 2 3 1 3 2 3 3 3 3
#> [25633] 2 5 4 5 4 1 2 4 4 3 5 1 1 1 1 3 1 1 3 2 3 1 3 3 1 1 1 1 3 2 4 1 2 2 1 3
#> [25669] 4 3 5 1 3 5 1 3 3 5 4 3 3 3 3 1 4 5 3 3 3 4 5 2 2 2 3 4 1 5 1 1 1 2 3 1
#> [25705] 3 1 3 3 5 3 3 3 2 1 3 5 2 3 5 2 5 3 5 1 1 3 2 1 1 3 2 1 3 3 5 3 4 2 5 1
#> [25741] 1 3 1 1 2 2 3 5 3 1 2 3 3 5 3 2 3 3 5 3 5 1 5 4 3 5 3 2 5 5 1 2 2 1 5 3
#> [25777] 3 3 2 1 3 5 5 1 1 2 4 2 5 3 3 3 1 1 3 5 2 2 3 5 3 3 2 1 3 4 4 2 1 3 3 3
#> [25813] 3 4 5 1 2 3 2 4 4 3 3 3 4 1 3 1 2 3 3 3 3 3 2 2 3 5 2 1 1 5 3 4 3 1 1 5
#> [25849] 5 3 3 3 1 2 2 2 3 2 2 4 3 1 2 4 1 1 1 2 5 3 2 1 1 3 3 1 3 3 5 3 3 2 1 1
#> [25885] 1 1 4 4 1 4 2 1 1 1 2 4 2 3 2 4 5 5 3 3 2 3 3 3 3 1 1 5 3 4 1 3 4 1 3 4
#> [25921] 2 4 3 2 3 3 2 3 1 4 3 5 1 3 3 3 3 4 2 5 5 1 3 1 5 4 1 5 4 2 4 1 3 1 5 2
#> [25957] 4 1 1 3 3 2 4 2 3 3 3 3 3 4 3 3 1 1 3 3 3 3 2 3 2 5 1 5 2 1 5 2 3 1 3 4
#> [25993] 4 1 1 3 1 2 5 1 4 5 3 1 3 2 4 5 3 1 4 3 3 3 1 2 3 5 3 2 4 1 4 3 3 1 3 4
#> [26029] 3 3 4 3 5 1 2 1 5 3 1 4 5 3 3 3 2 1 1 2 2 5 5 2 5 5 5 5 3 2 1 3 2 2 5 2
#> [26065] 1 5 3 3 3 2 1 3 2 5 3 3 3 5 1 1 3 2 4 1 1 2 4 3 5 5 5 1 3 3 3 3 3 3 5 2
#> [26101] 3 1 5 3 2 3 1 3 2 1 3 1 3 3 3 1 4 5 3 4 3 5 1 1 3 2 3 3 5 3 3 2 5 4 3 5
#> [26137] 3 5 3 4 4 3 3 5 3 5 3 3 4 2 1 2 1 3 2 1 3 2 3 4 3 5 1 1 3 5 3 3 1 5 1 4
#> [26173] 5 4 1 4 4 1 3 5 5 3 3 5 3 5 4 4 1 3 2 1 5 3 3 5 2 5 4 4 1 4 5 4 3 2 3 2
#> [26209] 1 5 3 3 3 3 3 3 3 5 2 3 1 4 1 1 3 3 3 5 1 3 1 4 3 1 1 2 3 3 1 4 3 2 1 4
#> [26245] 3 3 3 1 5 2 3 3 3 1 2 3 1 1 1 3 3 4 1 3 4 3 3 1 3 3 1 3 3 5 4 3 3 2 3 4
#> [26281] 3 2 3 3 2 3 3 2 1 1 1 5 1 1 1 4 5 5 4 3 5 2 2 5 3 4 3 3 5 3 1 1 5 3 3 3
#> [26317] 2 3 3 3 4 1 3 4 4 4 3 1 3 1 4 5 2 3 3 1 5 3 3 3 3 3 3 2 1 2 2 2 5 3 3 1
#> [26353] 1 5 3 3 4 1 1 3 5 1 3 1 3 5 4 3 3 3 2 2 2 1 3 1 3 1 3 3 3 3 1 3 3 1 3 2
#> [26389] 1 1 2 3 3 1 4 5 1 3 1 3 5 1 3 1 4 3 3 1 3 5 3 5 3 1 3 3 3 3 2 3 3 1 5 1
#> [26425] 3 4 3 1 3 5 2 2 1 1 1 3 3 3 4 5 5 3 2 3 3 5 4 3 4 3 1 3 4 4 1 1 3 3 3 3
#> [26461] 3 3 1 5 4 4 5 3 3 3 5 5 5 3 4 3 3 1 5 1 1 3 3 3 4 3 1 2 3 3 2 3 5 4 2 1
#> [26497] 5 1 3 5 3 1 3 3 3 3 1 2 4 3 2 3 5 5 3 1 2 1 3 3 5 1 3 1 3 4 3 1 5 5 5 4
#> [26533] 3 3 4 1 1 3 1 1 2 3 1 2 2 2 3 1 4 3 3 5 2 1 3 2 2 3 3 4 3 1 1 5 3 1 4 5
#> [26569] 2 1 3 1 4 3 5 5 5 1 2 1 3 4 3 1 5 3 4 3 5 1 5 3 5 4 4 3 5 3 2 5 5 1 2 3
#> [26605] 5 3 3 1 2 4 1 3 4 4 3 1 5 4 5 4 3 5 5 4 3 5 2 3 3 1 3 5 3 3 3 3 4 4 1 1
#> [26641] 5 3 3 3 2 1 3 3 2 1 2 5 2 3 3 5 2 3 3 5 5 1 3 3 1 2 3 3 5 1 5 1 4 3 5 1
#> [26677] 4 1 3 3 3 4 2 3 3 1 5 3 2 5 5 1 5 5 3 1 5 2 2 3 2 5 2 5 5 2 2 5 2 3 2 3
#> [26713] 3 2 1 2 3 3 5 3 5 3 1 2 3 3 3 4 5 3 5 3 3 2 3 3 1 3 1 5 1 3 3 5 5 1 3 2
#> [26749] 5 1 3 3 1 2 5 1 5 5 3 3 3 3 3 2 1 3 5 2 5 3 3 3 3 1 4 3 2 2 3 2 4 1 2 2
#> [26785] 3 3 5 3 3 1 3 3 3 5 5 2 2 2 3 4 3 5 2 2 5 3 1 5 3 3 2 3 1 3 1 4 3 4 4 3
#> [26821] 3 3 3 4 3 3 5 3 3 1 3 3 5 2 3 4 1 4 1 4 4 3 5 1 3 1 1 2 4 3 3 2 1 3 3 2
#> [26857] 5 3 5 1 4 1 3 5 5 4 1 1 1 1 4 3 5 4 1 1 3 4 3 5 1 5 3 3 1 3 2 5 5 5 2 5
#> [26893] 1 4 3 1 3 3 1 1 2 5 1 2 1 3 3 5 3 2 1 3 3 1 1 5 5 5 4 3 5 1 2 4 3 3 3 3
#> [26929] 2 3 5 4 3 2 3 5 1 3 3 2 4 3 3 4 3 3 3 1 3 3 4 4 1 3 3 3 1 3 3 5 5 4 1 4
#> [26965] 5 3 1 3 4 3 3 5 2 3 3 4 2 3 3 2 3 2 4 3 3 5 3 1 2 3 5 3 1 5 5 3 2 1 3 4
#> [27001] 1 3 5 5 4 3 3 3 1 5 3 3 5 4 3 5 1 5 4 4 3 1 1 3 4 4 3 5 5 2 5 3 3 3 3 1
#> [27037] 5 2 1 5 2 2 2 3 5 3 5 5 5 5 1 3 4 3 3 5 1 2 2 3 1 4 3 3 3 3 3 3 3 3 2 5
#> [27073] 3 1 1 3 1 5 1 2 3 3 4 1 5 1 4 5 3 3 3 3 5 3 5 5 3 3 4 4 2 3 5 4 1 1 1 2
#> [27109] 2 1 3 3 2 5 2 5 3 5 3 3 2 3 2 2 1 3 3 1 1 3 3 1 2 2 5 5 3 3 3 3 3 1 1 4
#> [27145] 3 3 3 1 1 3 5 3 1 1 5 3 3 5 1 4 3 2 2 1 3 5 3 3 3 3 3 3 3 4 3 3 1 2 1 5
#> [27181] 2 2 4 2 2 2 3 1 2 3 2 3 4 3 2 1 3 5 4 1 1 4 3 3 1 1 5 3 3 2 3 1 5 4 2 3
#> [27217] 3 1 3 3 2 3 4 3 2 3 3 5 3 1 3 1 4 3 2 3 3 1 3 3 2 3 1 1 5 5 3 5 1 5 2 5
#> [27253] 5 1 2 2 1 1 5 3 5 3 1 3 3 2 5 5 1 1 3 4 3 3 4 3 3 3 3 5 3 3 3 1 1 3 3 4
#> [27289] 5 3 3 1 1 4 3 2 3 5 3 1 2 3 3 3 4 3 1 1 5 3 3 2 2 5 3 3 3 2 3 3 3 1 1 4
#> [27325] 5 1 3 1 2 3 4 3 5 3 3 3 3 3 3 3 3 5 3 2 5 5 3 5 3 2 2 3 4 3 2 3 2 5 3 3
#> [27361] 1 3 4 3 5 2 1 3 5 3 5 1 3 5 3 3 1 5 3 1 2 1 3 1 3 1 3 4 3 3 3 3 1 1 5 1
#> [27397] 5 3 3 5 2 1 5 1 3 3 5 1 3 5 5 3 3 3 4 3 3 1 2 1 3 5 4 3 3 1 3 1 4 2 4 2
#> [27433] 2 5 1 1 3 4 3 1 3 4 3 1 2 3 1 2 3 3 4 3 1 1 2 3 3 2 5 5 4 3 5 4 3 4 5 3
#> [27469] 4 1 3 2 3 5 4 1 3 5 5 5 1 3 4 3 5 1 1 2 1 2 1 5 4 2 3 2 3 3 5 4 1 2 5 5
#> [27505] 1 3 1 3 3 2 1 3 3 3 4 4 1 1 3 1 5 5 5 1 5 3 5 5 2 5 1 3 5 5 5 3 1 5 3 3
#> [27541] 1 1 1 1 1 2 2 5 1 2 4 2 1 5 1 2 1 2 1 5 4 1 3 3 5 3 2 3 5 3 1 4 1 3 3 3
#> [27577] 1 4 3 3 5 3 3 1 5 2 5 5 3 1 4 2 3 3 2 4 2 1 5 3 5 3 5 1 1 3 1 5 4 4 2 5
#> [27613] 1 3 3 5 1 2 4 3 3 3 5 4 3 3 5 3 4 3 1 2 2 5 3 3 3 1 3 3 2 2 3 3 1 1 5 3
#> [27649] 1 2 5 4 1 2 4 4 3 3 4 2 1 4 1 1 1 3 3 5 4 1 5 5 5 5 2 3 1 1 4 3 5 5 5 5
#> [27685] 5 3 3 4 4 1 5 3 3 3 5 1 3 5 2 3 3 3 5 3 1 3 5 4 5 5 4 1 5 4 5 1 3 3 2 3
#> [27721] 2 3 3 5 2 3 1 1 5 3 3 3 4 5 3 3 2 2 3 2 5 1 3 2 4 3 1 5 1 2 3 1 5 2 5 1
#> [27757] 1 5 3 2 3 3 5 3 2 2 1 3 5 5 1 1 3 2 3 1 3 5 3 3 4 1 2 1 3 3 3 3 5 3 5 5
#> [27793] 3 1 3 5 3 1 4 3 5 2 3 3 3 1 5 2 5 3 3 1 3 1 3 1 5 5 4 3 4 2 2 1 3 3 3 4
#> [27829] 1 1 1 3 5 5 3 2 1 1 3 4 5 3 1 3 3 3 1 3 5 3 3 1 4 5 1 3 3 2 1 3 3 3 5 1
#> [27865] 3 5 2 2 3 2 3 1 4 4 3 3 1 1 5 5 1 3 3 1 2 4 5 3 5 1 1 1 1 3 3 4 5 3 3 5
#> [27901] 3 2 2 3 1 5 1 2 3 3 2 1 3 1 4 1 3 3 2 1 2 3 4 3 3 1 4 2 1 1 5 2 1 3 1 3
#> [27937] 3 1 3 4 2 3 2 4 2 3 1 5 3 3 4 1 4 3 3 5 3 4 5 3 4 4 5 2 1 5 4 3 5 1 2 4
#> [27973] 1 5 3 2 1 4 5 1 3 2 2 1 3 5 1 4 4 5 3 4 2 3 3 2 3 3 2 3 3 4 1 5 4 3 4 3
#> [28009] 5 2 3 3 1 3 2 1 3 3 4 3 4 5 4 2 5 1 3 5 1 3 3 1 3 4 3 3 5 2 1 5 4 1 3 3
#> [28045] 4 3 3 2 3 3 3 3 5 3 1 3 3 5 2 2 3 5 5 1 5 1 2 3 3 3 3 3 3 3 1 3 4 3 3 3
#> [28081] 3 3 3 3 5 3 1 1 5 2 1 1 5 5 1 3 3 3 3 1 3 3 3 3 3 3 5 3 3 1 3 1 3 3 3 3
#> [28117] 2 5 1 3 3 1 2 2 3 3 3 3 4 3 3 2 2 2 1 3 4 3 1 5 1 3 3 3 5 5 4 1 1 5 5 3
#> [28153] 3 1 3 3 5 1 5 1 5 1 1 1 5 5 3 3 5 1 3 3 3 3 2 3 3 2 2 1 1 1 5 3 4 1 3 1
#> [28189] 3 1 4 5 1 3 2 1 3 2 5 5 3 1 2 2 5 3 2 3 3 2 5 5 3 2 3 1 3 5 2 1 3 3 5 3
#> [28225] 3 3 3 3 3 5 3 4 1 1 1 3 3 5 3 3 4 3 5 5 3 2 2 5 1 1 4 1 1 4 3 3 1 3 4 1
#> [28261] 2 3 5 1 3 4 2 3 3 5 3 3 3 2 3 3 4 5 5 3 5 1 5 5 3 1 5 5 4 1 1 3 5 3 3 1
#> [28297] 2 5 5 4 3 3 3 1 5 5 2 5 1 3 1 1 3 1 1 5 1 3 1 3 5 3 2 3 3 3 2 3 3 1 2 2
#> [28333] 2 3 4 1 4 3 5 1 3 5 3 3 3 3 1 3 3 3 1 1 4 1 3 5 5 1 2 5 5 3 1 4 3 1 3 1
#> [28369] 5 5 3 1 1 5 1 1 4 4 3 2 2 3 2 3 1 1 1 1 5 5 3 3 3 3 3 3 5 5 4 4 3 3 5 3
#> [28405] 5 1 3 5 3 3 3 3 3 3 5 2 3 5 5 4 2 3 2 1 2 3 1 3 3 3 5 5 5 3 3 3 2 1 3 3
#> [28441] 1 3 1 1 5 3 1 4 1 2 5 4 5 1 3 3 3 5 1 1 3 2 1 2 4 1 5 5 3 1 2 3 3 3 3 3
#> [28477] 1 5 1 4 3 5 1 2 5 3 2 2 1 1 3 3 5 2 4 2 1 2 2 5 1 3 5 5 5 1 3 2 3 2 1 5
#> [28513] 2 4 3 3 1 4 3 1 5 2 3 4 1 5 3 3 3 3 5 1 3 2 2 3 5 3 5 4 5 2 3 1 4 2 3 2
#> [28549] 3 4 3 2 5 3 1 3 1 2 1 5 3 1 3 4 1 5 3 3 5 1 2 5 4 3 2 1 2 3 3 3 4 3 5 4
#> [28585] 3 3 3 1 1 1 3 4 5 4 2 1 5 3 3 2 2 1 3 3 5 3 2 3 3 1 5 5 3 1 2 3 3 3 3 2
#> [28621] 3 5 3 3 3 5 4 3 1 1 2 3 1 4 3 2 1 4 4 3 5 2 1 1 3 1 1 5 3 2 2 3 4 3 4 3
#> [28657] 2 3 3 5 5 3 2 3 3 3 5 5 3 1 5 3 1 1 1 2 3 5 2 5 2 4 5 4 1 3 2 2 4 1 3 1
#> [28693] 3 2 2 1 3 5 4 3 5 3 3 4 2 3 4 1 4 3 1 3 5 5 3 4 3 2 1 1 4 1 3 1 1 3 3 3
#> [28729] 3 5 5 4 2 1 1 2 5 3 3 5 3 3 3 1 1 3 2 3 5 3 3 4 1 3 1 3 2 4 4 5 1 2 3 4
#> [28765] 1 4 3 1 2 3 3 1 5 5 5 1 5 5 5 3 2 5 2 3 3 2 5 5 3 2 5 3 1 2 2 1 1 1 1 2
#> [28801] 3 5 4 4 3 2 3 5 3 1 3 2 3 2 1 2 1 5 3 1 1 3 2 2 5 5 3 5 3 4 4 3 3 4 1 3
#> [28837] 5 4 3 1 5 2 5 5 5 3 3 3 1 5 3 1 2 5 2 3 5 3 1 3 5 3 4 4 3 5 5 1 2 1 3 2
#> [28873] 3 3 5 1 1 5 5 5 2 3 1 1 1 3 3 3 3 2 4 5 1 2 1 3 1 3 1 2 4 3 5 1 3 3 3 1
#> [28909] 3 3 2 3 4 3 3 1 5 4 4 3 3 3 5 2 5 1 5 1 2 5 1 4 4 3 1 5 3 3 2 2 5 3 5 4
#> [28945] 4 2 4 2 5 1 1 3 1 1 1 1 2 3 1 5 1 1 4 3 1 2 5 3 4 3 1 2 4 3 3 3 1 1 3 4
#> [28981] 3 3 3 3 1 3 5 2 4 1 1 4 2 3 5 2 3 2 5 1 3 2 1 3 3 3 3 3 3 3 1 3 4 1 4 1
#> [29017] 1 4 3 3 2 3 4 5 1 1 5 1 3 1 3 3 2 4 3 5 1 4 2 5 3 3 3 5 3 3 1 2 2 5 3 3
#> [29053] 1 2 1 5 3 3 2 2 2 1 2 1 2 5 2 5 5 3 5 3 2 5 1 2 3 1 4 2 1 1 1 5 5 1 1 2
#> [29089] 3 5 1 3 3 2 1 4 3 4 3 2 5 2 5 4 3 1 3 2 5 3 2 4 3 3 2 3 5 1 3 3 2 1 3 4
#> [29125] 3 1 3 3 1 1 3 4 3 5 4 3 4 5 3 1 4 1 4 1 3 5 4 3 5 3 3 2 2 4 5 4 5 3 3 1
#> [29161] 4 3 4 3 4 1 4 5 5 3 1 5 3 5 3 3 3 3 1 5 2 3 4 1 3 3 3 3 4 1 3 3 2 2 2 3
#> [29197] 4 3 2 4 3 5 3 5 3 3 4 3 3 3 1 3 3 3 2 3 4 2 3 2 3 3 3 2 3 1 3 1 4 1 1 3
#> [29233] 1 3 3 4 3 3 5 1 3 3 3 4 1 4 3 3 3 2 3 3 4 4 4 3 1 1 5 4 3 1 3 3 3 5 5 4
#> [29269] 1 5 5 3 5 2 4 5 3 3 3 1 3 3 3 5 3 3 4 3 1 1 1 1 1 5 4 2 3 3 2 3 3 3 5 3
#> [29305] 3 1 3 5 3 3 4 1 1 3 3 3 3 3 1 5 3 5 3 3 3 5 2 5 5 4 3 3 3 3 1 1 3 2 3 3
#> [29341] 3 3 3 5 1 3 3 4 3 1 5 3 1 2 2 1 1 3 3 3 1 3 5 3 3 3 1 2 1 2 5 5 5 1 3 4
#> [29377] 3 1 1 1 4 3 1 3 1 1 3 1 1 1 2 2 3 4 3 4 3 4 1 3 5 2 4 1 1 5 2 3 1 2 3 1
#> [29413] 3 5 4 3 1 1 3 5 3 3 5 2 3 2 1 5 3 3 1 3 3 3 5 1 2 1 3 3 2 4 4 5 2 3 3 3
#> [29449] 5 2 5 3 5 2 3 1 3 2 3 3 3 1 5 3 4 3 1 1 1 2 3 4 3 1 1 1 1 3 5 3 1 4 2 4
#> [29485] 3 4 1 3 2 1 3 3 3 2 2 5 2 2 5 3 1 4 2 3 4 4 1 5 2 1 1 3 2 3 1 4 3 3 3 2
#> [29521] 5 1 5 3 5 4 1 1 3 3 2 5 3 1 5 3 1 2 1 3 1 5 1 5 3 3 3 2 3 4 4 4 4 1 3 4
#> [29557] 2 3 1 5 1 1 3 3 3 3 3 3 5 4 3 1 1 3 5 3 2 3 3 5 1 5 3 2 3 3 5 1 5 3 2 3
#> [29593] 2 1 3 2 2 4 5 3 5 3 5 3 4 3 3 3 3 4 1 1 3 5 5 2 2 3 3 1 4 5 2 4 3 3 3 1
#> [29629] 1 3 1 3 1 2 4 1 3 5 1 5 3 2 2 3 3 3 3 1 5 2 5 1 4 5 1 4 1 3 3 3 4 3 2 3
#> [29665] 2 5 3 5 1 3 5 5 3 2 3 3 3 1 1 5 1 1 2 5 3 5 4 3 2 3 4 3 5 5 3 5 3 1 3 2
#> [29701] 2 2 4 3 5 3 5 3 3 4 4 5 4 2 2 5 3 2 4 3 3 2 5 1 4 3 3 3 2 3 1 1 4 5 2 1
#> [29737] 3 5 3 3 4 3 4 3 2 1 3 4 3 3 1 2 3 5 1 3 3 1 3 1 1 3 3 3 3 5 4 3 3 1 2 2
#> [29773] 4 4 5 3 2 1 3 4 5 3 2 2 3 5 1 2 5 3 2 1 3 4 2 1 4 1 1 2 5 3 5 4 5 3 1 4
#> [29809] 1 2 5 5 2 4 3 3 2 1 5 3 1 2 5 2 4 3 3 1 3 2 5 2 5 3 1 5 3 4 2 2 5 4 5 5
#> [29845] 3 3 5 2 4 2 4 4 1 1 3 3 3 4 2 2 1 2 5 2 3 1 4 3 4 5 3 3 3 3 3 3 3 3 2 4
#> [29881] 1 1 1 2 1 1 3 5 2 5 2 4 3 3 2 2 2 4 4 4 3 4 1 4 2 5 5 2 2 5 3 1 1 5 3 2
#> [29917] 3 4 4 4 5 2 1 3 5 4 5 3 3 3 3 1 1 1 3 5 3 5 5 5 4 4 3 3 5 3 1 3 5 1 5 5
#> [29953] 5 4 4 4 5 5 1 3 3 1 1 3 2 3 4 2 2 2 2 2 2 4 4 4 3 4 5 5 3 1 3 3 1 2 1 3
#> [29989] 1 2 5 2 1 3 4 4 1 3 3 5 1 5 3 3 3 3 2 3 3 3 4 1 1 4 2 2 5 3 5 5 1 4 1 1
#> [30025] 1 5 1 1 1 1 2 2 5 5 4 5 1 2 5 3 3 4 5 3 3 3 3 2 3 1 1 3 3 3 2 3 1 3 3 3
#> [30061] 5 4 2 5 1 2 5 1 3 3 4 5 3 5 3 1 5 3 1 1 3 3 3 5 1 3 3 4 1 5 4 3 2 1 5 1
#> [30097] 3 3 1 3 3 1 1 1 3 1 3 1 3 2 3 3 5 2 3 4 4 5 3 1 5 1 3 5 1 3 3 1 3 5 5 4
#> [30133] 5 4 3 3 4 3 5 2 1 1 1 1 1 3 3 3 4 5 5 5 2 4 3 3 4 1 3 5 1 2 4 3 3 3 3 2
#> [30169] 5 1 3 5 5 5 2 2 3 5 5 3 2 3 5 2 3 3 4 2 5 5 3 3 3 1 2 1 1 5 5 1 5 3 1 3
#> [30205] 1 3 2 5 5 3 2 3 3 1 1 3 4 3 1 3 4 5 3 3 4 3 1 5 3 3 3 1 5 1 3 1 2 3 1 3
#> [30241] 3 5 1 2 2 3 3 1 1 3 1 2 2 3 5 2 3 3 3 4 3 1 5 1 5 5 1 3 2 3 1 3 4 1 3 5
#> [30277] 3 2 2 5 3 4 3 3 3 3 3 1 2 3 3 3 3 1 3 4 3 1 3 1 3 4 5 1 1 3 3 1 5 1 4 3
#> [30313] 5 3 4 4 5 1 4 4 3 3 3 1 1 1 1 4 1 1 1 1 4 3 3 2 1 4 3 4 2 4 2 5 3 1 2 2
#> [30349] 3 1 5 5 4 3 2 1 3 2 1 3 2 5 3 1 1 5 3 5 3 3 3 3 1 3 1 5 3 3 3 3 3 3 2 1
#> [30385] 4 5 2 4 2 3 2 2 3 1 2 5 1 4 3 2 3 5 1 2 1 5 2 3 1 5 4 2 3 3 1 2 5 3 3 3
#> [30421] 3 5 1 4 5 3 3 4 1 3 1 5 2 3 5 3 1 4 5 2 2 1 4 4 1 5 5 1 1 5 2 5 5 3 3 3
#> [30457] 1 3 1 1 3 5 2 4 3 3 3 5 1 5 1 5 1 5 3 3 3 3 4 3 3 4 5 3 5 3 1 2 4 3 3 1
#> [30493] 5 2 5 3 3 3 2 2 3 3 3 3 1 1 1 2 2 2 3 1 3 3 4 5 5 4 3 3 3 5 2 5 1 4 1 3
#> [30529] 1 1 4 4 1 5 4 4 3 2 5 3 5 3 4 3 3 5 1 3 3 2 1 4 3 1 5 3 3 3 5 1 3 5 5 3
#> [30565] 3 4 4 1 1 1 3 1 1 4 3 5 2 3 3 3 3 2 1 3 3 2 5 1 2 3 2 5 3 1 3 2 1 4 1 2
#> [30601] 5 1 2 3 2 2 3 5 2 3 5 3 4 4 3 1 3 3 4 4 3 3 1 3 2 5 2 3 1 5 2 2 3 1 3 4
#> [30637] 3 4 2 4 1 5 1 3 3 3 2 3 3 2 3 3 1 3 3 3 1 1 3 3 3 2 1 3 5 3 3 3 5 3 2 3
#> [30673] 5 3 3 1 3 3 3 3 3 4 3 3 1 4 2 4 3 5 1 1 1 3 5 1 5 3 5 3 4 3 1 3 4 2 2 3
#> [30709] 2 1 1 3 5 2 1 3 3 1 2 5 3 5 1 3 3 2 1 2 3 3 3 1 1 3 4 1 3 1 5 5 3 1 3 5
#> [30745] 2 3 5 3 3 1 5 2 3 1 2 2 1 1 3 4 5 4 2 2 1 2 5 1 3 3 3 5 3 3 1 4 1 1 3 2
#> [30781] 1 3 4 5 2 3 3 1 3 3 3 1 3 2 5 3 3 5 3 4 5 3 2 3 3 3 1 1 4 1 3 1 1 2 3 5
#> [30817] 3 1 5 5 1 5 5 3 2 4 2 3 1 4 3 3 3 2 1 3 5 5 3 3 3 3 3 3 2 1 5 4 4 1 3 5
#> [30853] 2 3 3 2 1 3 1 2 3 4 3 5 1 5 5 1 1 3 1 3 1 3 2 3 3 1 3 1 4 5 1 3 3 1 2 3
#> [30889] 2 2 3 3 1 4 1 2 5 3 3 5 3 4 3 4 3 1 2 4 3 1 1 5 5 1 2 3 2 1 1 4 4 3 3 1
#> [30925] 3 2 1 5 5 1 1 4 3 3 3 2 5 1 2 3 1 3 5 5 1 1 1 4 2 1 2 3 4 4 3 3 5 2 5 5
#> [30961] 3 5 3 3 2 1 1 5 5 3 3 3 4 4 3 3 1 3 1 1 2 2 2 3 3 5 4 4 2 3 2 5 3 1 1 3
#> [30997] 1 4 3 3 4 1 3 4 2 3 4 3 1 2 1 1 3 3 3 1 4 4 3 3 1 5 5 5 5 3 3 3 3 3 2 5
#> [31033] 3 5 5 3 1 4 2 2 3 3 1 4 3 3 3 3 4 2 1 5 3 2 1 1 1 5 2 3 2 3 2 3 1 2 1 3
#> [31069] 1 3 1 1 3 3 3 5 3 3 4 3 3 1 1 3 2 3 4 4 3 3 1 2 2 1 5 3 3 3 1 3 3 3 5 5
#> [31105] 3 2 5 3 3 3 1 5 5 4 1 5 4 1 1 3 5 3 3 3 2 3 3 3 5 4 3 5 3 3 5 2 2 1 1 1
#> [31141] 1 2 4 3 4 4 5 4 2 3 4 1 1 3 2 3 5 5 5 5 2 3 3 3 1 3 3 1 2 3 3 3 3 5 3 5
#> [31177] 3 3 5 1 4 3 4 1 2 3 5 4 1 5 3 3 3 1 1 3 3 2 3 2 1 5 3 2 3 3 3 1 3 3 3 4
#> [31213] 3 4 3 1 3 3 5 3 4 3 2 3 4 3 2 2 3 3 3 5 2 4 5 5 5 2 1 3 5 5 5 3 1 4 2 3
#> [31249] 3 3 5 4 3 3 1 3 1 2 2 3 1 2 3 3 2 1 3 5 4 2 3 2 2 4 5 1 3 4 5 3 4 3 2 5
#> [31285] 1 2 3 3 1 3 3 2 3 5 3 3 3 3 2 1 3 4 1 1 5 2 4 1 3 3 2 5 3 1 1 5 1 5 4 2
#> [31321] 5 4 4 1 4 5 2 1 3 4 1 5 1 2 1 2 4 1 3 5 1 2 3 1 2 5 5 2 5 1 5 2 3 5 3 1
#> [31357] 3 1 5 3 3 3 1 2 1 5 3 3 4 3 2 5 2 2 5 2 5 1 1 5 1 5 4 2 3 4 3 3 5 5 3 3
#> [31393] 3 2 3 3 1 2 3 5 1 3 3 3 4 2 3 5 2 3 4 4 3 4 1 5 1 3 5 3 5 1 3 3 4 3 5 3
#> [31429] 3 3 2 3 5 3 5 1 5 2 5 3 3 1 2 1 1 1 3 1 3 1 3 3 2 5 1 2 4 2 3 3 3 2 3 3
#> [31465] 3 1 3 3 3 3 3 1 1 3 3 3 5 5 2 1 1 2 2 5 3 3 5 3 3 3 3 4 4 1 1 2 5 3 3 5
#> [31501] 3 1 3 1 1 2 5 4 1 2 1 1 1 1 1 5 3 4 1 5 5 1 3 1 3 4 1 4 2 5 1 3 3 3 3 1
#> [31537] 3 3 5 3 3 5 1 4 3 1 3 5 5 4 1 4 2 2 1 5 3 2 5 4 5 4 3 3 3 3 1 2 3 2 3 4
#> [31573] 3 3 3 3 1 2 2 5 5 1 1 2 5 5 4 5 4 3 2 5 4 1 4 2 5 5 3 1 4 4 1 5 4 5 3 1
#> [31609] 3 4 5 3 3 4 4 3 3 5 2 1 3 5 3 5 3 5 2 1 1 3 1 4 3 3 3 5 3 3 4 1 1 1 3 5
#> [31645] 3 3 2 3 1 5 3 5 3 3 5 4 5 5 3 4 3 3 3 2 1 2 4 3 3 1 5 5 5 4 2 2 5 3 1 2
#> [31681] 3 1 3 1 4 5 5 1 5 2 3 3 3 1 2 3 5 4 2 3 5 1 1 5 1 2 3 1 2 5 3 5 1 3 1 5
#> [31717] 4 5 4 3 3 2 2 4 4 1 4 1 5 3 3 1 5 4 3 2 1 5 3 4 4 1 4 3 1 1 5 1 3 3 3 1
#> [31753] 1 5 3 1 2 1 3 3 1 3 2 1 3 3 1 2 5 3 2 5 3 2 3 5 1 3 2 5 2 5 5 3 4 3 3 4
#> [31789] 2 3 3 1 5 3 1 1 1 3 4 3 2 5 4 1 3 3 2 1 1 4 2 4 1 5 1 3 1 1 1 4 4 5 4 5
#> [31825] 4 2 5 3 5 3 4 5 5 2 3 4 3 2 5 2 3 4 4 2 3 2 1 4 3 3 2 3 4 2 5 5 3 3 3 3
#> [31861] 3 3 5 4 1 5 1 3 3 5 1 3 3 2 2 3 1 1 1 1 1 1 3 5 3 2 1 1 1 2 3 1 1 5 2 4
#> [31897] 3 3 5 3 1 1 1 1 3 1 3 1 2 1 4 3 4 1 1 5 3 5 3 3 5 3 3 4 3 3 3 5 1 2 2 3
#> [31933] 3 1 1 5 5 5 5 2 4 3 1 3 5 1 2 3 3 3 3 3 2 1 3 2 2 3 4 2 3 3 3 4 4 3 1 5
#> [31969] 2 4 3 1 3 4 1 1 3 3 3 1 5 3 5 3 3 4 3 1 5 5 3 3 2 3 3 2 3 5 2 3 1 2 2 3
#> [32005] 5 3 3 4 1 1 3 1 3 1 2 5 3 4 4 3 5 5 3 1 3 2 2 2 5 1 3 2 3 3 3 3 2 2 3 3
#> [32041] 2 1 1 2 3 1 3 1 1 2 1 3 3 4 1 1 3 1 5 3 3 1 5 5 2 4 3 5 1 3 5 5 2 4 5 2
#> [32077] 1 2 3 5 1 3 3 4 5 3 2 4 3 2 3 2 5 3 3 1 3 3 3 4 3 1 2 3 3 2 2 1 4 5 3 3
#> [32113] 5 5 4 1 2 5 2 2 3 1 2 3 3 3 4 1 3 3 3 4 4 1 5 3 1 1 1 3 3 3 1 2 3 3 1 1
#> [32149] 4 1 3 1 3 3 5 2 1 1 2 3 3 2 3 3 5 5 1 2 3 1 2 2 5 1 3 1 2 3 3 5 3 3 3 5
#> [32185] 1 3 2 3 4 3 3 2 5 1 3 4 3 3 4 4 3 4 3 1 3 4 2 3 1 5 2 3 3 3 3 3 3 4 2 4
#> [32221] 4 2 3 4 5 3 2 1 3 2 4 5 4 1 5 3 2 5 5 4 3 1 3 1 1 3 5 5 2 5 1 1 3 5 4 5
#> [32257] 1 1 2 1 3 2 3 5 3 1 1 5 3 1 4 3 3 3 3 3 3 5 4 1 3 3 2 3 2 3 1 5 3 1 1 1
#> [32293] 3 3 1 1 2 1 3 2 3 3 5 3 4 5 5 3 3 4 3 2 4 3 1 3 3 5 3 3 3 4 3 1 3 4 3 5
#> [32329] 1 1 3 5 1 4 3 3 2 3 1 3 1 4 3 2 1 4 3 5 1 3 2 5 3 3 3 2 3 1 1 1 5 2 1 2
#> [32365] 3 1 5 2 5 1 3 2 5 3 5 3 1 2 5 5 3 3 3 1 2 3 5 4 3 3 1 3 2 3 2 3 3 2 1 3
#> [32401] 3 4 1 5 3 2 5 5 4 4 2 5 4 3 1 4 5 3 3 3 3 2 5 5 4 2 2 3 4 3 1 1 4 2 5 4
#> [32437] 5 5 2 3 3 4 1 1 5 3 3 4 3 5 5 3 5 3 5 2 5 3 5 3 1 5 5 5 4 5 1 3 3 3 3 1
#> [32473] 4 1 3 3 3 2 5 5 3 5 3 1 5 3 5 5 1 5 1 5 3 4 1 3 4 3 3 2 1 3 1 4 5 5 3 3
#> [32509] 3 1 1 1 3 4 4 3 3 2 3 1 5 4 3 2 3 2 3 3 5 3 3 5 5 4 1 2 2 5 3 3 3 3 2 3
#> [32545] 5 1 5 1 3 5 3 1 2 5 3 3 2 3 3 5 3 5 1 3 3 1 1 5 2 4 3 2 3 4 3 2 3 5 4 5
#> [32581] 2 3 3 3 3 1 4 3 3 4 4 3 3 2 1 2 4 1 5 3 3 1 1 5 3 3 5 3 1 4 1 2 5 4 2 3
#> [32617] 4 3 2 3 3 3 3 2 3 3 3 3 5 2 4 1 1 2 4 4 3 1 2 3 3 3 4 3 5 1 2 2 3 3 5 3
#> [32653] 1 3 5 3 5 3 3 3 2 5 5 3 3 3 2 1 4 3 3 5 1 5 1 1 1 3 5 1 3 3 1 1 3 5 1 5
#> [32689] 3 4 5 2 2 2 2 3 5 3 3 1 3 4 3 3 4 1 1 4 3 4 3 5 1 3 3 5 5 2 2 2 5 1 3 3
#> [32725] 1 3 5 1 5 5 2 3 3 3 3 5 1 3 1 1 3 3 3 3 1 3 3 4 1 3 5 3 2 3 1 2 1 4 2 1
#> [32761] 3 2 3 3 3 5 3 3 1 3 1 2 3 2 1 4 3 1 5 5 2 2 3 1 3 2 1 5 2 5 1 3 2 3 3 1
#> [32797] 1 5 1 2 3 3 1 3 2 2 1 1 3 1 5 3 3 3 3 1 2 5 1 5 3 3 5 3 5 1 3 1 3 3 3 2
#> [32833] 5 2 3 4 3 2 3 5 3 3 3 4 5 2 3 3 2 4 3 3 3 3 3 5 1 3 5 4 1 2 3 3 3 4 3 3
#> [32869] 5 3 3 2 3 5 2 1 3 3 1 1 2 2 1 1 5 3 1 1 5 3 4 5 1 1 5 5 2 3 1 4 3 4 4 5
#> [32905] 4 1 2 3 5 2 3 1 3 3 2 3 3 1 3 3 3 1 4 3 3 1 2 3 5 3 5 5 3 3 1 5 1 3 1 4
#> [32941] 3 1 2 1 3 1 3 3 3 4 3 2 1 5 2 4 3 3 2 5 3 4 3 4 3 1 3 1 3 1 1 3 3 3 3 1
#> [32977] 3 3 3 3 4 2 2 5 2 3 1 3 1 5 5 3 3 1 2 2 3 3 3 5 3 1 3 1 3 3 3 1 1 3 1 1
#> [33013] 5 3 1 5 3 1 5 1 1 4 4 3 3 5 2 3 4 1 5 3 2 5 1 3 5 4 4 3 3 5 4 1 4 4 1 2
#> [33049] 3 3 5 2 2 4 2 3 3 5 4 5 1 3 2 4 1 5 1 2 4 3 5 5 3 4 4 1 3 5 2 1 3 3 1 5
#> [33085] 4 1 3 4 3 2 3 2 3 4 2 3 1 3 1 3 1 3 1 3 3 5 2 1 5 3 1 3 3 3 3 3 3 4 5 4
#> [33121] 3 3 3 3 1 5 1 2 1 5 4 4 1 4 1 3 1 3 4 3 5 3 3 3 2 5 3 1 4 5 1 3 4 4 1 3
#> [33157] 3 3 4 3 3 4 1 3 2 1 5 4 5 3 3 3 5 5 4 3 1 5 3 4 2 1 5 1 1 2 5 5 1 1 3 3
#> [33193] 5 5 2 4 3 5 3 1 5 5 1 3 3 5 2 2 3 5 4 2 1 2 4 3 1 4 5 3 3 1 3 3 5 1 3 3
#> [33229] 5 3 2 5 2 3 1 1 4 5 1 3 5 3 1 3 2 3 4 5 2 4 3 3 1 2 3 1 2 4 1 1 4 3 3 5
#> [33265] 3 3 3 2 5 1 3 1 4 3 3 1 1 5 2 3 3 1 2 3 3 1 2 3 1 3 5 1 2 3 3 3 3 1 1 3
#> [33301] 1 5 3 4 3 4 5 1 3 3 1 3 4 1 4 3 5 5 3 1 1 4 2 3 5 2 3 3 3 5 3 1 3 4 3 5
#> [33337] 3 2 1 3 5 3 3 3 3 3 3 3 3 2 1 1 5 1 3 3 5 3 3 3 2 5 2 3 5 2 3 2 1 4 4 3
#> [33373] 2 4 5 3 2 5 1 3 2 4 1 1 4 3 5 3 4 1 1 3 3 3 5 4 5 4 3 2 4 3 5 1 3 3 1 3
#> [33409] 1 3 4 5 1 3 1 1 1 3 5 4 3 3 5 3 5 5 3 2 3 2 4 3 5 3 1 3 3 1 1 3 4 3 1 1
#> [33445] 3 1 3 2 2 1 2 2 3 1 5 1 1 5 4 1 3 2 5 2 5 4 1 3 2 3 5 1 1 2 3 3 2 1 2 2
#> [33481] 1 3 3 4 5 1 1 3 4 5 3 5 3 3 3 1 2 1 4 4 1 3 5 1 3 1 1 2 5 3 3 2 3 3 4 3
#> [33517] 2 2 3 5 4 1 3 4 5 3 3 1 1 1 3 5 4 3 4 4 5 2 4 3 4 3 2 3 3 1 2 1 3 5 3 3
#> [33553] 2 3 3 4 3 5 3 1 3 3 3 5 2 3 4 3 1 3 3 5 1 5 5 5 1 3 4 3 1 1 3 3 3 3 3 2
#> [33589] 2 3 3 3 3 1 1 3 5 3 3 1 3 2 3 3 3 2 3 3 3 5 3 5 1 5 2 5 3 4 1 4 1 4 3 1
#> [33625] 3 5 3 3 5 2 3 3 3 5 3 4 2 4 1 4 3 5 3 3 3 5 5 5 3 1 3 5 3 5 5 4 2 4 4 4
#> [33661] 2 5 4 1 3 2 5 4 4 1 5 3 1 5 4 3 3 2 4 5 3 5 1 4 2 3 3 3 1 3 5 4 5 3 3 1
#> [33697] 3 1 3 1 2 4 2 3 5 5 3 3 3 2 3 1 3 1 2 5 2 5 5 4 3 1 3 3 5 3 1 5 1 4 3 3
#> [33733] 3 3 1 5 1 2 1 3 1 3 2 5 2 1 3 4 1 1 1 5 2 1 2 3 2 3 5 2 1 1 3 3 3 3 4 3
#> [33769] 3 3 3 3 5 3 1 5 1 2 3 2 3 1 3 1 3 2 3 3 5 3 1 3 3 4 3 3 5 1 4 5 5 3 4 3
#> [33805] 5 1 3 1 5 2 4 1 3 4 1 1 4 3 5 3 3 2 3 3 1 2 5 3 3 1 1 1 2 1 3 3 4 3 3 3
#> [33841] 2 1 4 2 1 2 3 3 3 3 3 5 5 1 3 5 4 5 2 2 2 2 3 1 3 3 3 3 5 4 4 3 1 5 5 1
#> [33877] 1 1 3 3 3 3 2 3 4 1 5 5 4 5 3 5 3 1 3 5 3 5 2 3 4 3 3 3 5 3 1 4 4 2 2 3
#> [33913] 2 5 3 5 5 1 3 5 1 5 5 2 1 5 5 3 1 3 3 5 5 5 3 3 2 3 3 3 3 5 3 2 3 3 5 3
#> [33949] 1 5 1 3 3 3 5 1 3 3 1 2 1 3 3 3 1 4 1 3 3 4 3 3 4 1 1 3 3 1 1 1 3 5 5 3
#> [33985] 5 4 5 2 3 5 3 3 1 3 2 2 1 3 3 5 2 4 5 4 5 3 3 4 3 2 2 3 5 3 3 3 3 5 3 4
#> [34021] 2 3 3 2 5 3 5 3 3 4 5 1 3 2 4 2 3 3 2 2 3 5 5 3 3 1 3 3 3 2 3 1 5 2 3 3
#> [34057] 1 3 3 3 4 3 3 3 1 3 1 3 2 3 4 4 4 1 4 5 1 4 4 5 2 2 3 5 5 5 5 3 1 3 5 3
#> [34093] 1 2 3 3 2 5 3 4 2 3 3 3 3 3 3 2 2 5 3 3 4 2 3 3 4 5 2 3 3 5 3 5 3 3 3 3
#> [34129] 1 1 2 1 3 4 1 3 3 3 2 5 4 3 3 1 3 3 2 3 5 3 1 1 3 3 3 3 1 3 5 3 5 4 3 3
#> [34165] 3 1 3 2 5 5 5 3 3 5 3 2 5 4 4 3 3 3 3 1 3 5 3 4 3 3 1 3 3 3 3 3 3 5 3 3
#> [34201] 3 1 1 5 2 3 3 2 3 1 3 3 3 4 2 5 2 1 1 5 3 3 3 3 1 3 2 4 3 3 3 3 5 3 4 3
#> [34237] 1 1 3 4 3 2 3 5 1 2 4 4 3 5 5 3 4 1 4 3 5 2 1 1 3 3 3 1 4 2 3 3 5 5 4 5
#> [34273] 1 3 3 3 4 5 1 4 3 3 4 1 3 3 2 3 2 3 1 4 3 3 5 5 5 5 3 4 3 3 3 3 4 5 1 5
#> [34309] 2 3 5 1 4 5 2 3 4 5 3 3 3 3 1 2 3 3 3 3 5 3 1 2 1 1 1 4 1 5 3 4 5 1 5 5
#> [34345] 3 1 3 4 4 5 5 5 1 1 3 1 1 3 1 2 1 3 3 5 3 3 4 1 3 2 4 2 5 1 3 4 1 1 1 4
#> [34381] 1 1 5 2 1 3 3 3 3 3 2 3 2 2 4 3 1 1 2 5 1 2 5 5 4 3 1 2 1 2 3 4 2 2 1 1
#> [34417] 1 3 3 1 4 3 3 2 3 4 2 3 4 3 3 3 3 3 3 5 2 3 1 2 3 1 2 5 3 4 3 1 3 4 3 1
#> [34453] 3 3 4 3 3 1 3 3 3 4 1 4 5 3 1 3 2 1 4 1 2 3 5 1 4 1 1 5 3 1 1 3 1 4 5 1
#> [34489] 5 3 2 2 5 3 1 3 4 2 5 3 5 2 3 5 1 4 2 4 1 1 1 5 3 2 3 2 3 3 3 2 3 3 5 5
#> [34525] 2 1 2 5 3 2 1 5 4 4 1 3 3 4 4 3 4 3 3 3 5 3 3 3 2 3 3 3 1 3 5 3 3 3 2 5
#> [34561] 4 3 1 4 5 4 3 2 1 3 1 3 3 2 3 5 3 4 3 2 1 5 1 2 3 2 3 5 3 2 2 1 3 2 4 2
#> [34597] 3 3 5 2 1 5 1 3 5 3 2 3 5 3 3 4 5 1 3 1 2 5 4 3 1 3 4 3 3 3 3 3 3 3 2 4
#> [34633] 2 5 5 3 5 3 2 4 4 4 3 3 2 2 2 5 3 1 2 5 5 3 1 3 5 3 1 3 1 5 5 3 4 1 3 3
#> [34669] 2 3 1 2 2 5 3 3 1 3 4 2 3 3 5 3 1 4 3 4 5 3 3 3 3 2 3 1 2 1 3 3 2 3 4 1
#> [34705] 4 1 2 5 4 2 1 2 3 3 1 2 1 5 2 1 3 3 3 5 2 5 4 2 2 1 3 3 5 5 3 4 5 4 3 3
#> [34741] 3 1 3 3 2 3 3 5 5 1 2 3 4 5 2 1 1 4 3 5 3 5 4 2 5 3 3 5 3 4 3 4 5 3 3 1
#> [34777] 3 5 5 2 3 2 3 2 4 2 3 3 2 4 3 1 5 4 1 1 2 3 1 3 4 3 1 3 5 5 5 1 3 5 1 3
#> [34813] 3 1 1 5 5 4 3 2 1 2 4 1 1 3 1 2 3 3 2 3 3 4 2 1 5 1 1 1 5 3 4 4 3 4 3 3
#> [34849] 4 3 5 3 1 3 5 3 3 1 1 3 3 5 4 4 5 3 5 2 5 5 4 3 3 2 5 2 5 1 3 2 2 1 3 3
#> [34885] 4 4 1 4 3 1 1 2 3 2 3 4 5 5 3 1 3 3 1 4 3 3 3 2 2 1 1 5 3 4 1 3 3 1 3 3
#> [34921] 1 5 4 1 2 5 3 3 3 3 4 5 2 3 5 1 3 3 3 4 3 1 3 5 3 1 3 2 4 3 1 4 1 3 1 4
#> [34957] 4 1 1 2 5 3 3 2 2 3 1 3 1 1 1 1 1 3 1 2 1 1 3 3 2 5 5 5 1 4 3 4 1 1 5 3
#> [34993] 3 3 3 1 1 4 3 3 2 3 5 5 1 5 3 3 4 4 2 5 4 1 1 1 1 3 3 3 3 3 4 4 3 2 3 1
#> [35029] 3 2 3 3 3 5 4 3 5 5 1 4 5 3 5 1 3 3 5 3 1 1 3 4 4 3 1 1 1 3 3 5 1 4 3 4
#> [35065] 3 3 2 3 2 3 5 2 3 5 5 3 3 5 1 5 3 5 3 5 1 5 1 2 2 3 3 2 3 1 1 1 3 5 1 4
#> [35101] 3 3 1 4 3 1 1 3 2 3 4 5 4 1 3 1 1 3 5 3 1 2 1 3 4 2 4 3 3 3 1 3 1 3 2 1
#> [35137] 5 3 1 2 1 3 3 3 1 1 4 1 2 1 3 3 3 2 1 1 3 3 1 1 1 1 3 5 2 1 2 5 5 3 5 1
#> [35173] 4 4 4 3 3 3 2 5 5 1 2 3 5 1 5 1 5 1 5 5 3 3 4 4 5 2 2 4 4 5 5 1 1 1 1 3
#> [35209] 3 3 4 1 5 3 1 3 1 4 3 2 1 1 3 5 3 3 3 3 1 1 5 3 3 3 4 5 1 1 5 3 1 3 1 3
#> [35245] 3 3 1 1 3 5 3 1 3 4 2 1 3 3 1 3 1 3 5 3 4 3 3 4 5 3 3 3 3 4 1 1 3 3 3 1
#> [35281] 5 3 4 5 3 3 3 2 3 1 1 5 2 3 2 3 1 2 3 2 1 4 5 2 4 3 3 1 1 5 3 1 2 3 3 3
#> [35317] 3 3 1 2 3 1 2 2 5 1 3 4 2 1 3 2 1 5 3 3 1 4 3 1 4 5 3 5 1 5 4 1 4 4 5 5
#> [35353] 5 1 3 3 2 3 4 1 1 3 5 5 2 3 3 4 5 5 2 4 5 4 3 3 5 2 1 3 1 1 5 1 2 5 5 5
#> [35389] 3 1 2 1 3 3 2 5 2 2 5 3 3 3 4 4 5 1 3 3 4 3 3 1 3 3 3 5 1 3 3 1 1 4 2 3
#> [35425] 5 3 3 4 3 5 3 2 3 5 1 2 3 3 5 4 5 3 1 2 1 1 1 3 2 1 3 5 5 5 2 3 3 3 3 1
#> [35461] 3 3 3 3 3 5 1 3 1 3 1 3 2 1 2 4 3 3 3 1 3 1 3 3 3 3 3 3 3 3 1 5 5 2 5 3
#> [35497] 4 3 5 3 4 3 3 5 4 1 1 1 3 1 2 2 3 3 5 1 3 4 2 4 3 3 1 5 3 3 3 3 3 3 3 3
#> [35533] 3 2 5 3 1 3 3 5 1 2 3 3 2 4 5 2 1 4 3 2 3 3 3 1 1 1 3 3 1 3 4 2 3 4 3 2
#> [35569] 2 3 1 3 4 3 3 1 3 1 1 3 3 3 2 5 1 5 4 5 5 2 3 3 2 5 4 3 4 1 4 5 3 3 3 3
#> [35605] 4 3 3 1 3 5 5 5 3 3 3 2 5 5 3 3 1 1 3 5 4 3 5 2 2 3 3 3 3 3 1 2 4 5 5 3
#> [35641] 3 3 3 1 5 5 2 2 1 4 5 1 1 1 3 1 3 1 1 3 2 2 2 3 3 5 1 3 1 3 4 2 3 2 3 3
#> [35677] 1 3 3 3 3 5 1 3 1 4 3 5 5 4 4 3 2 1 3 1 1 5 2 1 1 3 3 1 5 1 1 5 3 1 3 3
#> [35713] 4 1 3 5 1 5 3 1 3 1 5 4 5 1 1 3 3 3 3 2 3 5 2 5 5 5 3 3 1 2 3 3 3 4 3 2
#> [35749] 2 1 3 3 5 5 5 4 5 2 3 2 1 2 3 2 5 1 3 2 1 3 3 1 3 3 3 3 2 5 2 4 3 1 2 5
#> [35785] 5 4 3 3 3 5 3 2 3 5 1 1 4 4 3 1 3 4 3 3 4 3 2 2 1 3 3 4 3 2 2 5 1 1 3 4
#> [35821] 5 3 5 2 3 4 3 1 5 3 3 2 1 3 3 5 1 3 5 1 1 3 1 5 3 2 1 4 3 4 1 1 3 1 3 4
#> [35857] 2 5 3 3 3 3 2 1 4 3 2 3 3 3 5 4 2 3 5 5 3 4 3 5 4 3 1 4 3 3 3 5 1 5 2 2
#> [35893] 3 3 1 4 3 2 2 5 2 4 3 1 1 1 3 1 5 2 1 1 2 1 3 3 3 4 2 1 4 4 4 5 5 1 5 3
#> [35929] 1 1 2 1 5 3 3 5 1 3 1 3 3 3 1 5 2 3 4 2 2 3 3 5 3 3 1 3 1 5 2 3 1 3 2 4
#> [35965] 5 4 1 2 4 3 5 3 3 3 1 5 2 3 4 3 2 2 3 5 3 3 1 2 3 3 4 1 3 1 3 3 3 3 3 3
#> [36001] 1 3 3 3 2 1 1 5 3 1 4 4 2 3 1 2 1 3 1 3 2 2 5 1 3 5 3 2 1 5 5 5 5 3 3 1
#> [36037] 1 3 3 2 4 5 3 1 5 1 2 2 2 2 3 5 4 4 4 3 5 3 2 1 3 3 3 1 3 1 1 1 3 3 2 3
#> [36073] 3 3 1 3 3 3 3 2 4 3 2 3 3 1 2 3 5 3 2 3 3 3 1 3 3 5 3 3 1 2 5 5 3 1 3 3
#> [36109] 2 3 2 3 3 3 3 3 4 1 5 5 2 2 2 1 3 2 2 3 3 3 3 4 5 3 1 1 3 4 4 1 4 5 1 5
#> [36145] 1 3 3 3 3 1 3 3 3 5 2 1 5 3 1 1 3 1 3 3 1 3 1 3 3 4 5 3 5 3 3 3 1 3 1 1
#> [36181] 3 3 3 4 3 3 3 3 3 5 3 5 5 3 4 2 2 3 3 3 2 2 3 2 1 3 4 1 3 3 1 3 3 2 3 1
#> [36217] 1 1 5 2 3 3 4 2 3 3 1 3 3 4 5 5 3 1 3 1 3 3 3 1 4 5 3 4 3 3 2 5 3 3 3 3
#> [36253] 5 2 5 3 2 1 5 4 4 5 1 5 5 3 3 4 5 3 5 1 4 3 3 3 3 4 2 3 3 3 4 5 5 2 1 4
#> [36289] 3 3 3 1 3 3 5 2 1 3 2 2 2 4 3 5 3 2 2 3 3 3 3 3 5 1 3 5 5 4 1 2 3 3 5 3
#> [36325] 5 3 2 4 4 1 2 3 4 3 1 5 4 4 3 5 3 3 1 1 2 3 1 3 3 3 3 4 3 1 4 4 3 2 3 2
#> [36361] 1 5 5 3 3 5 5 3 2 2 3 3 3 5 4 5 5 3 3 1 3 2 4 5 3 3 4 1 4 3 1 3 3 4 3 3
#> [36397] 2 5 5 3 3 1 3 1 2 3 3 3 5 3 3 3 4 3 3 3 3 3 1 3 1 2 1 5 5 2 2 2 3 3 4 5
#> [36433] 3 2 1 1 2 4 1 5 3 3 3 3 2 2 1 3 1 3 3 3 5 3 1 5 3 2 3 4 1 3 5 3 1 4 3 1
#> [36469] 2 2 3 4 4 3 5 1 3 2 5 4 2 3 4 2 1 1 2 3 3 1 3 3 2 5 3 4 3 5 3 3 2 3 3 3
#> [36505] 1 1 5 2 2 2 2 5 2 1 3 5 1 3 5 1 2 4 3 3 1 3 1 4 5 5 2 3 5 1 4 3 3 1 3 2
#> [36541] 2 2 1 2 4 1 5 3 1 1 3 3 5 3 1 3 3 1 3 1 3 2 3 1 3 3 2 1 1 5 4 2 4 3 2 4
#> [36577] 2 5 5 5 2 3 3 5 3 3 3 3 1 5 1 3 3 3 3 3 1 1 1 2 1 3 1 5 2 1 5 3 1 5 3 2
#> [36613] 1 1 3 3 1 5 3 3 5 1 1 1 3 3 1 1 5 1 3 2 3 3 4 1 5 3 5 3 3 2 1 4 2 5 2 1
#> [36649] 2 3 4 4 2 1 3 3 4 5 3 5 3 3 3 1 4 4 3 1 3 3 3 5 3 3 1 2 1 3 2 5 4 5 3 2
#> [36685] 4 3 1 3 4 2 3 3 5 4 2 1 3 4 5 2 3 1 3 2 3 1 3 2 1 5 3 3 1 5 4 1 2 5 3 5
#> [36721] 3 3 1 2 1 3 1 2 3 4 3 3 5 1 2 2 5 4 4 5 5 1 1 5 1 5 1 1 1 3 3 5 3 3 3 3
#> [36757] 3 3 5 4 5 3 3 4 3 2 5 2 3 3 3 4 3 3 5 3 3 1 3 5 1 5 1 3 4 2 1 3 3 5 2 1
#> [36793] 2 4 3 5 1 3 2 4 3 1 4 4 2 5 3 2 4 2 4 3 3 3 5 5 3 4 3 2 2 3 4 1 4 3 2 3
#> [36829] 3 4 3 5 1 4 3 3 3 2 3 3 3 3 1 2 3 5 2 5 4 1 3 1 5 3 3 3 4 1 3 2 5 4 4 2
#> [36865] 1 3 1 5 3 1 3 3 3 5 5 3 1 2 3 3 3 1 3 3 1 3 3 3 3 2 3 3 3 5 2 1 4 1 3 1
#> [36901] 3 3 2 3 3 3 3 3 3 1 5 3 3 2 3 5 1 3 4 1 3 1 2 3 1 3 4 4 5 3 2 2 1 1 1 1
#> [36937] 4 5 2 3 3 5 1 3 2 5 3 4 2 3 2 4 1 3 5 3 4 4 5 1 3 5 1 3 2 1 4 3 3 5 3 1
#> [36973] 2 3 2 1 5 2 3 1 3 4 4 3 3 1 1 5 2 2 3 3 1 2 3 3 1 5 5 4 2 4 5 2 5 3 1 2
#> [37009] 4 2 1 5 4 2 2 4 3 1 4 3 4 4 4 4 3 3 2 3 2 2 4 2 1 4 3 5 3 3 5 1 3 1 5 4
#> [37045] 3 3 4 1 3 5 1 2 1 2 1 1 3 3 4 5 1 1 4 5 3 3 3 5 3 3 3 4 1 1 5 2 2 3 2 3
#> [37081] 2 3 2 5 2 3 1 1 2 4 3 4 1 1 2 2 1 4 4 1 4 1 5 3 5 1 3 3 3 1 1 5 3 5 3 3
#> [37117] 3 3 2 4 3 3 3 1 4 3 5 4 3 3 5 3 3 1 5 3 1 3 1 3 5 3 1 3 1 3 1 1 3 1 2 1
#> [37153] 1 5 2 1 4 3 5 4 4 4 2 4 1 3 2 3 3 1 3 1 5 2 4 4 2 1 3 2 3 1 3 1 5 2 5 1
#> [37189] 3 4 3 4 1 4 3 3 3 3 3 1 4 1 5 1 1 2 3 3 1 5 2 3 2 4 3 1 3 3 1 5 4 3 5 1
#> [37225] 3 5 4 3 5 3 4 1 5 3 3 3 3 2 1 5 5 3 2 3 3 3 5 1 4 1 3 3 2 5 4 3 3 3 5 3
#> [37261] 3 4 1 3 1 4 3 4 5 3 4 3 1 4 2 3 3 1 2 2 2 5 4 1 3 1 3 4 4 2 2 5 5 4 5 2
#> [37297] 4 3 2 3 3 1 2 5 1 1 5 4 1 3 1 1 3 4 1 5 4 4 4 2 1 3 3 2 5 2 5 1 2 3 3 3
#> [37333] 3 2 1 3 5 3 1 4 1 3 4 3 3 3 5 1 5 3 2 3 1 3 2 1 1 4 3 3 3 3 3 3 1 3 5 5
#> [37369] 4 3 3 3 1 1 1 3 3 4 1 3 1 3 2 2 2 3 1 1 3 3 3 5 3 3 4 5 1 4 3 3 3 2 3 1
#> [37405] 1 3 4 2 1 2 3 5 1 3 4 3 3 4 4 1 5 3 1 5 3 3 3 5 2 4 1 5 3 2 2 3 2 3 3 3
#> [37441] 3 3 5 4 1 2 4 4 3 2 1 2 1 3 1 2 3 1 2 4 5 3 2 1 3 4 1 3 3 4 1 5 1 3 4 5
#> [37477] 3 1 3 1 3 1 1 3 3 3 3 5 1 3 2 2 3 1 4 3 5 1 3 4 3 3 5 1 1 1 3 5 2 3 3 3
#> [37513] 2 1 4 4 3 1 4 3 3 1 5 5 5 3 3 3 3 5 1 3 4 2 3 1 3 1 1 1 3 3 2 3 5 3 3 3
#> [37549] 4 3 5 2 1 1 3 3 4 3 3 3 5 3 3 4 1 3 1 3 3 3 5 1 4 3 1 3 5 4 5 3 3 3 5 1
#> [37585] 1 1 3 1 3 3 3 3 5 3 3 1 4 1 4 3 3 2 1 2 2 4 4 2 3 3 1 3 4 3 3 3 5 4 3 2
#> [37621] 2 3 3 1 3 3 2 1 3 1 5 2 2 1 2 3 5 3 5 1 1 3 4 3 3 1 5 3 3 5 3 5 3 2 4 3
#> [37657] 5 3 4 3 2 4 5 3 1 2 3 3 1 1 3 2 2 1 1 5 3 3 3 5 2 3 1 3 2 2 3 3 4 2 3 1
#> [37693] 3 2 3 5 1 3 5 3 4 1 2 2 4 5 3 1 5 2 3 4 4 3 3 3 1 5 1 3 3 3 2 1 3 3 5 3
#> [37729] 1 3 5 4 5 5 1 3 2 3 3 1 4 1 5 5 4 3 3 3 3 3 4 1 5 4 4 5 4 4 3 1 5 5 3 3
#> [37765] 2 1 3 2 3 3 1 3 2 5 1 3 1 3 3 5 3 4 3 2 2 4 3 4 5 1 4 5 3 3 2 1 1 1 4 1
#> [37801] 3 1 5 4 4 4 4 5 5 3 2 4 2 2 1 3 3 3 4 1 3 3 1 5 5 5 3 3 5 3 5 4 3 3 5 3
#> [37837] 1 1 1 3 2 2 5 5 1 4 3 3 2 5 3 4 3 4 3 5 1 1 3 5 5 4 2 3 3 3 3 5 1 1 5 3
#> [37873] 4 3 4 3 2 3 2 3 5 5 3 2 1 4 2 3 1 4 3 5 3 4 2 2 3 3 5 1 1 3 5 1 3 1 2 1
#> [37909] 3 2 4 4 1 1 1 3 3 3 3 1 3 2 3 3 3 4 2 1 1 1 3 1 2 3 3 3 2 2 3 5 3 4 5 3
#> [37945] 3 4 1 5 3 1 3 1 1 3 3 3 3 4 3 3 1 1 3 2 2 1 3 4 1 5 1 1 5 3 2 3 3 3 1 3
#> [37981] 2 3 1 5 5 3 3 1 5 3 1 2 2 1 3 3 3 1 2 1 3 2 3 5 5 3 3 5 2 5 3 3 2 3 3 2
#> [38017] 4 4 2 3 1 1 1 5 2 2 1 3 2 5 3 1 2 3 1 4 3 2 1 3 2 2 5 1 5 1 1 5 4 3 1 5
#> [38053] 4 4 2 1 3 5 4 1 1 1 1 3 3 3 5 3 1 2 1 2 1 3 1 3 1 2 3 3 3 3 5 3 3 5 5 3
#> [38089] 1 5 4 4 4 4 5 3 2 3 1 3 1 4 1 3 2 2 2 2 3 1 1 3 1 1 5 5 3 3 2 5 1 3 3 5
#> [38125] 5 1 3 2 2 3 3 2 5 5 5 1 5 3 3 3 3 3 3 3 5 4 3 5 3 5 3 4 2 1 2 1 4 3 3 5
#> [38161] 2 2 4 5 3 5 5 3 1 1 5 3 5 5 1 3 5 4 3 1 1 3 2 4 2 2 5 5 1 5 3 1 3 3 2 3
#> [38197] 4 1 1 2 2 1 4 4 3 3 5 3 4 3 1 3 3 3 4 3 3 5
#> 
#> Within cluster sum of squares by cluster:
#> [1]  82994.12  61206.77 110798.28  74278.60  30572.70
#>  (between_SS / total_SS =  47.7 %)
#> 
#> Available components:
#> 
#> [1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss"
#> [6] "betweenss"    "size"         "iter"         "ifault"

We can now attach the clusters back to the data-frame:

df.cluster <- cbind(DATA_65.impute.sample, cluster=km$cluster)

df.cluster %>%
  select(cluster, all_of(colnames(df.cluster)))  %>%
  head()
#>   cluster   SEQN DIABETES Gender  Race      Family_Income     BPXDI3     BPXSY3
#> 1       2  49315        0 Female Black $10,000 to $14,999 0.93103091 -1.0509978
#> 2       2  12656        0   Male Other               <NA> 0.61498539 -1.1784710
#> 3       2  75508        0   Male White $35,000 to $44,999 0.93103091 -0.9235245
#> 4       2  39286        0 Female Black               <NA> 0.45696263  0.2237348
#> 5       3  96820        0   Male White $20,000 to $24,999 0.14091710 -0.2861583
#> 6       5 101514        0 Female Other $25,000 to $34,999 0.02758816 -0.2632931
#>       BPXDI2     BPXSY2        BPXDI1     BPXSY1     BMXLEG     BPXML1
#> 1 0.45560151 -1.3159807  0.2908770907 -1.5604544  0.8364784 -0.8312833
#> 2 0.77614628 -1.0666961  0.7728788919 -1.0748524 -0.3969271 -0.3202789
#> 3 0.61587389 -0.8174115  0.9335461590 -1.0748524  1.6500011  0.1907255
#> 4 0.29532912  0.4290114 -0.1911247104  0.5033540  0.3903530  0.7017299
#> 5 0.45560151 -0.3188424  0.7728788919 -0.4678500  1.1513904 -0.3202789
#> 6 0.01842516 -0.2704832  0.0009582346 -0.2705987 -0.6899635 -0.2279253
#>       BPXPLS     PEASCTM1   BMXWAIST     BMXBMI      BMXHT     BMXARMC
#> 1  0.6742685  0.721939570  0.7788639  0.5919049  0.4208552  0.56225066
#> 2 -0.2218206 -0.178901222 -0.1850887 -0.1390703  0.2104422  0.24176592
#> 3  1.3911398  1.351235051 -0.5338554 -0.5820856  1.1237243  0.10242472
#> 4 -2.1932166  0.549529849  0.5415088  0.3510154  0.4477165  0.06062237
#> 5  1.7495754  0.140934143  1.0937228  0.4008546  1.3878598  1.21715426
#> 6  0.1725892  0.008049367 -1.9289225 -1.3850507 -2.7398171 -1.80654961
#>      BMXARML Poverty_Income_Ratio       BMXWT        Age DIABETES_factor
#> 1  0.9094677           -1.1137083  0.58471445 -0.3785749               0
#> 2  0.2779486           -0.6380018 -0.03573447  0.2342063               0
#> 3  0.6726480           -0.7487827  0.18244537 -0.7462436               0
#> 4  0.7673759            1.7731137  0.44153393  0.4793187               0
#> 5  0.9884076           -0.6836175  1.19493620  0.6018750               0
#> 6 -2.5165231           -0.8204646 -1.71299201 -1.1956165               0

10.7.1.1 So what?

We can modify cat_feature_explore from Section 9.2.2.2 to create:

proc_chi_square <- function(data, factor, feature){

  enquo_feature <- enquo(feature)
  enquo_factor <- enquo(factor)
  
  tmp <- data %>%
    select(!!enquo_factor, !!enquo_feature) %>%
    collect()
  
   table1 <- table(tmp) 
   
   table2 <- table(tmp %>% select(!!enquo_feature, !!enquo_factor) )
   
   plot_chi_square_residuals <-  vcd::mosaic(table2, gp = vcd::shading_max)
  
   plot_balloon <- gplots::balloonplot(table2, 
                                       main ="Balloon Plot for Gender by Diabetes \n Area is proportional to Freq.")
   
   return( list(Frequency_Table = table2,
                plot_chi_square_residuals = plot_chi_square_residuals,
                plot_balloon = plot_balloon))
   
}

Now let’s run Chi-Square on it:

proc_chi_square(df.cluster, DIABETES, cluster)
#> $Frequency_Table
#>        DIABETES
#> cluster     0     1
#>       1  5241    57
#>       2 13694   718
#>       3  6747  1126
#>       4  3523   831
#>       5  6275     6
#> 
#> $plot_chi_square_residuals
#>         DIABETES     0     1
#> cluster                     
#> 1                 5241    57
#> 2                13694   718
#> 3                 6747  1126
#> 4                 3523   831
#> 5                 6275     6
#> 
#> $plot_balloon
#> NULL

10.7.2 Effectiveness of k-means clusters as features

If you’re still skeptical because df.cluster is a sample of A_DATA_2.Num.impute then we can project the clusters onto all of A_DATA_2.Num.impute:

A_DATA_2.Num.impute_scale <- A_DATA_2.Num.impute %>%
  mutate_at(all_of(features_65_num$feature), scale)
library(clue)

cluster <- clue::cl_predict(km,
                             A_DATA_2.Num.impute_scale %>% select(all_of(features_65_num$feature))
                            )

A_DATA_2.Num.impute_scale$.cluster <- factor(as.numeric(as.character(cluster)))

Now run proc_chi_square on it:

proc_chi_square(A_DATA_2.Num.impute_scale, DIABETES, .cluster)
#> $Frequency_Table
#>         DIABETES
#> .cluster     0     1
#>        1 13005   186
#>        2 34482  1779
#>        3 16694  2776
#>        4  8875  2052
#>        5 15684    14
#> 
#> $plot_chi_square_residuals
#>          DIABETES     0     1
#> .cluster                     
#> 1                 13005   186
#> 2                 34482  1779
#> 3                 16694  2776
#> 4                  8875  2052
#> 5                 15684    14
#> 
#> $plot_balloon
#> NULL

Above, we can see Diabetics are much more concentrated in Clusters 2, 3, & 4 than the others.

A_DATA_2.Num.impute_scale %>%
  group_by(.cluster) %>%
  summarise(N_Diabetic = sum(DIABETES)) 
#> # A tibble: 5 × 2
#>   .cluster N_Diabetic
#>   <fct>         <dbl>
#> 1 1               186
#> 2 2              1779
#> 3 3              2776
#> 4 4              2052
#> 5 5                14

\(~\)


\(~\)

10.8 Disscussion

The functions in this chapter compared to the others.