Benefit Reserves

\[_tV+\text{APV at }t\text{ of }\textbf{future}\text{ premiums}=\text{APV at }t\text{ of }\textbf{future}\text{ benefits}\]

Recursion Relation

\[({_tV}+P_t)(1+i)=b_{t+1}q_{x+t}+{_{t+1}V}p_{x+t}\]

Rearrangement yields Fackler’s accumulation formula: \[_{t+1}V=\frac{({_tV}+P_t)(1+i)-b_{t+1}q_{x+t}}{p_{x+t}}\]

In terms of Net Amount at Risk (top-up on reserve to equate benefit), \[({_tV}+P_t)(1+i)={_{t+1}V}+(b_{t+1}-{_{t+1}V})q_{x+t}\]

Retrospective Approach

\[{_tV}=\frac{\text{AFV at }t\text{ of }\textbf{past}\text{ premiums}-\text{AFV at }t\text{ of }\textbf{past}\text{ benefits}}{_tp_x}\]