Collective Risk Model
\[S_N=X_1+X_2+\cdots+X_N\]
Conditional Expectation and Variance
\[\begin{align*} E[X]&=E[E[X|Y]] \\ \mathrm{Var}(X)&=E[\mathrm{Var}(X|Y)]+\mathrm{Var}(E[X|Y]) \end{align*}\]
Compound Distribution
\[\begin{align*} E[S]&=E[N]E[X] \\ \mathrm{Var}(S)&=E[N]\mathrm{Var}(X)+\mathrm{Var}(N)E[X]^2 \\ M_S(t)&=M_N(\ln(M_X(t))) \end{align*}\]
Compound Poisson, \(\mathcal{CPN}(\lambda,F_X)\)
If \(N\sim\mathcal{PN}(\lambda)\), then \[\begin{align*} E[S]&=\lambda E[X] \\ \mathrm{Var}(S)&=\lambda E[X^2] \end{align*}\]
If \(S_i\sim\mathcal{CPN}(\lambda_i,F_i)\), then \(\sum S_i\sim\mathcal{CPN}\left(\sum\lambda_i,\dfrac{1}{\sum\lambda_i}\sum\lambda_iF_i\right)\)
Compound negative binomial, \(\mathcal{CNB}(k,p,F_X)\)
- \(\mathrm{Var}(N)>E[N]\)
- Appropriate for modeling heterogeneity of number of claims since if \(N\ |\ \lambda\sim\mathcal{PN}(\lambda)\) and \(\lambda\sim\mathcal{G}(\alpha,\beta)\), then \(N\) unconditionally is distributed as negative binomial or more technically, Poisson-Gamma mixture distribution, i.e. mixture of Poissons with gamma as the mixing distribution.