# libraries, fonts and colours --------------------library(tidytuesdayR)library(tidyverse)library(extrafont)fonts()my_col <-"#720000"my_col2 <-"#9900bfbf"# load data and wrangling ----------------------------tuesdata <- tidytuesdayR::tt_load(2021, week =15)forest <- tuesdata$forestforest_area <- tuesdata$forest_areabrazil_loss <- tuesdata$brazil_losssoybean_use <- tuesdata$soybean_usevegetable_oil <- tuesdata$vegetable_oilbrazil_loss <- tuesdata$brazil_lossslopes <- brazil_loss%>%pivot_longer(cols=c(5,6,11,12,13),names_to="Predictors",values_to="values")slopes <- slopes %>%select(year,fire,Predictors,values)# slope plot --------------------------------------------------slope_plot <-ggplot(slopes, aes(x = fire, y = values, color = Predictors) ) +geom_point() +geom_smooth(method ="lm", alpha = .15, aes(fill = Predictors)) +theme_minimal() +scale_y_continuous(name="Predictors", labels = scales::label_number_si(), limits=c(0,92000)) +scale_x_continuous(name="Fire (hectares)", labels = scales::label_number_si(), limits=c(26000,537000)) +annotate("curve", x =400000, xend =450000, y =50000, yend =75000, color ="red", curvature =-0.5) +annotate("text", x=500000, y=75000, label="driving down: tree plantations \ndriving up: natural disturbances", colour=my_col) +labs(x="Fire",y="Predictors",title ="Brazil Fire due to predictors",subtitle ="flooding, mining, disturbances, plantations, infrastructures...",caption ="Viz @fgazzelloni | DataSource: @ourworldindata | Brazil Fire predictors") +theme(legend.position ="bottom",legend.text =element_text(family="Trebuchet MS"),legend.background =element_blank(),legend.title =element_text(family="Trebuchet MS"),legend.key =element_rect(fill ="white", colour =NA),plot.title =element_text(family="Trebuchet MS", size =32,face="bold", hjust=0 ),plot.subtitle =element_text(family="Trebuchet MS", size =20),axis.title =element_text(family="Trebuchet MS", size =12),strip.background =element_rect(colour ="black", fill ="white"),strip.text.x =element_text(colour ="white", face ="bold"),panel.spacing =unit(5, "lines"),panel.grid.major =element_blank(),panel.grid.minor =element_blank(),plot.background =element_rect(fill ="azure", color =NA),panel.background =element_rect(fill ="azure") ) +annotate("text", x =280000, y =80000, family="Trebuchet MS",label ="researchers at *Global Forest Watch* estimate that global deforestation \nin 2019 was around 5.4 million hectares. \n95% of this was in the tropics 33.12% in Brazil")# save final plot ---------------------------------------------------------ragg::agg_png(here::here("w15", "tidytuesday_slope.png"),res =320, width =14, height =8, units ="in")slope_plotdev.off()# read the image, attach the Tidytuesday logo and save it --------------------------library(ggimage)library(magick)tidy_logo<-image_read("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/static/plot_logo.png") %>%image_resize("300x300")tidy_slope <-image_read("tidytuesday_slope.png")attached_logo <-image_composite(tidy_slope, tidy_logo,operator="atop",gravity="northeast") # tell R where to put the logoimage_write(attached_logo, path ="tidytuesday_slope.png", format ="png") # save final plot