2 Package ggplot2
An elegant modern graphic method based on Wilkinson's Grammar of Graphics
2.2 Path, ribbon and rectangles.
h <- ggplot(economics, aes(date, unemploy))
# Path
h + geom_path()
# Ribbon
h + geom_ribbon(aes(ymin = unemploy-900, ymax = unemploy+900), fill = "steelblue") + geom_path(size = 0.8)
# Rectangle
h + geom_rect(aes(xmin = as.Date('1980-01-01'), ymin = -Inf, xmax = as.Date('1985-01-01'), ymax = Inf), fill = "steelblue") + geom_path(size = 0.8)
2.2.1 Add line segments between points (x1, y1) and (x2, y2):
2.3 Graphical parameters:
2.3.1 Convert the variable dose from numeric to factor variable
ToothGrowth$dose <- as.factor(ToothGrowth$dose)
p <- ggplot(ToothGrowth, aes(x=dose, y=len))
p+ geom_boxplot()
2.3.3 Change title and axis labels
p1 <- p +labs(title="Plot of length \n by dose", x ="Dose (mg)", y = "Teeth length")
p1
2.3.4 Change the appearance of labels
p1 + theme( plot.title = element_text(color="violet", size=14, face="bold.italic"), axis.title.x = element_text(color="blue", size=14, face="bold"), axis.title.y = element_text(color="blue", size=14, face="bold") )
# Hide labels
p1 + theme(plot.title = element_blank(), axis.title.x = element_blank(), axis.title.y = element_blank())
2.4 Legend position and appearance
2.4.1 Convert the variable dose from numeric to factor variable
ToothGrowth$dose <- as.factor(ToothGrowth$dose)
p <- ggplot(ToothGrowth, aes(x=dose, y=len, fill=dose))+
geom_boxplot()
2.4.2 Change legend position: "left","top", "right", "bottom", "none"
p + theme(legend.position="top")
2.4.3 Remove legends
p + theme(legend.position = "none")
# Change the appearance of legend title and labels
p + theme(legend.title = element_text(colour="darkgreen"), legend.text = element_text(colour="red"))
# Change legend box background color
p + theme(legend.background = element_rect(fill="violet"))
2.4.4 Change the order of legend items
p + scale_x_discrete(limits=c("2", "0.5", "1"))
# Set legend title and labels
p + scale_fill_discrete(name = "Dose", labels = c("A", "B", "C"))
2.4.5 Convert dose and cyl columns from numeric to factor variables
ToothGrowth$dose <- as.factor(ToothGrowth$dose)
mtcars$cyl <- as.factor(mtcars$cyl)
2.6 Change the low and high colors Sequential color scheme
sp2+scale_color_gradient(low="blue", high="red")
2.7 Diverging color scheme
mid<-mean(mtcars$qsec)
sp2+scale_color_gradient2(midpoint=mid, low="blue", mid="white", high="red", space = "Lab" )
2.9 Convert cyl as factor variable
mtcars$cyl <- as.factor(mtcars$cyl)
2.9.1 Basic scatter plot
ggplot(mtcars, aes(x=wt, y=mpg)) +
geom_point(shape = 18, color = "steelblue", size = 4)
2.9.2 Change point shapes and colors by groups
ggplot(mtcars, aes(x=wt, y=mpg)) +
geom_point(aes(shape = cyl, color = cyl))
2.9.3 Change colors and shapes manually
ggplot(mtcars, aes(x=wt, y=mpg, group=cyl)) + geom_point(aes(shape=cyl, color=cyl), size=2)+ scale_shape_manual(values=c(3, 16, 17))+ scale_color_manual(values=c('#999999','#E69F00', '#56B4E9'))+ theme(legend.position="top")
2.10 Basic line plot
2.11 Line plots with multiple groups
2.12 Change line types, colors and sizes
ggplot(df2, aes(x=time, y=bill, group=sex)) +
geom_line(aes(linetype=sex, color=sex, size=sex))+ geom_point()+ scale_linetype_manual(values=c("twodash", "dotted"))+ scale_color_manual(values=c('#999999','#E69F00'))+ scale_size_manual(values=c(1, 1.5))+ theme(legend.position="top")
2.14 Change plot themes
p + theme_gray(base_size = 14)
p + theme_bw()
p + theme_linedraw()
p + theme_light()
p + theme_minimal()
p + theme_classic()
2.15 Axis limits: Minimum and Maximum values
p <- ggplot(cars, aes(x = speed, y = dist)) +
geom_point()
2.16 Default plot
print(p) ## Change axis limits using coord_cartesian()
p + coord_cartesian(xlim =c(5, 20), ylim = c(0, 50))
# Use xlim() and ylim()
p + xlim(5, 20) + ylim(0, 50)
## Warning: Removed 19 rows containing missing values (geom_point).
# Expand limits
p + expand_limits(x = c(5, 50), y = c(0, 150))
2.18 Log transformation using scale_xx() # possible values for trans : 'log2', 'log10','sqrt'
p + scale_x_continuous(trans='log2') +
scale_y_continuous(trans='log2')
2.19 Format axis tick mark labels
require(scales)
## Loading required package: scales
##
## Attaching package: 'scales'
## The following object is masked from 'package:readr':
##
## col_factor
p + scale_y_continuous(trans = log2_trans(), breaks = trans_breaks("log2", function(x) 2^x), labels = trans_format("log2", math_format(2^.x)))
# Reverse coordinates
p + scale_y_reverse()
2.21 Change the style and the orientation angle of axis tick labels face can be "plain", "italic", "bold" or "bold.italic"
p + theme(axis.text.x = element_text(face="bold", color="#993333", size=14, angle=45), axis.text.y = element_text(face="bold", color="blue", size=14, angle=45))
# Remove axis ticks and tick mark labels
p + theme( axis.text.x = element_blank(), # Remove x axis tick labels
axis.text.y = element_blank(), # Remove y axis tick labels
axis.ticks = element_blank()) # Remove ticks
## Customize continuous and discrete axes: ### Discrete axes:
2.21.1 Change x axis label and the order of items
p + scale_x_discrete(name ="Dose (mg)", limits=c("2","1","0.5"))
2.22 Customize the plot
2.22.1 1. Change x and y axis labels, and limits
sp <- sp + scale_x_continuous(name="Speed of cars", limits=c(0, 30)) + scale_y_continuous(name="Stopping distance", limits=c(0, 150))
2.24 Add vertical line at x = 3; change line type, color and size
sp + geom_vline(xintercept = 3, color = "blue", size=1.5)
2.25 Add regression line
sp + geom_abline(intercept = 37, slope = -5, color="blue")+ ggtitle("y = -5X + 37")
2.27 My Data Example
Water samples were collected on 6/6/18, 9/24/18, 12/17/18, 1/26/19 and ran on an autoanalyzer to determine NO3-N, NH4-N, PO4, and Chl-a concentrations across 8 water tanks identified by treatments (control "A" or nutrient enriched "N"). Moreover this data was used in my master's thesis. Research was conducted at LSU wetland observation greenhouses in Baton Rouge, LA.
2.27.1 Location map
LA_counties <- map_data("county", "louisiana") %>%
select(lon = long, lat, group, id = subregion)
head(LA_counties, n=3)
## lon lat group id
## 1 -92.61863 30.48136 1 acadia
## 2 -92.48685 30.48709 1 acadia
## 3 -92.48685 30.48709 1 acadia
ggplot(LA_counties, aes(lon, lat)) +
geom_point(size = .25, show.legend = FALSE) +
coord_quickmap()
ggplot(LA_counties, aes(lon, lat, group = group )) +
geom_polygon(fill = "white", colour = "grey50") +
geom_point(data = LA_counties, mapping = aes(x = -91.1828669024795, y = 30.4114813833709), colour = "red") +
coord_sf()
Here I made a map that contains the geolocation of our wetland observation greenhouses using ggplot.
library(readr)
Porewater_data <- read_csv("~/Desktop/R folder/Bookdown/Porewater_data.csv")
head(Porewater_data, n=3)
## # A tibble: 3 x 7
## Tank Date `NO3 (uM)` `NH4 (uM)` `PO4 (uM)` `Conc of chl (ug/… Nutrient
## <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 1 6/6/18 2.07 1.35 3.08 2.77 A
## 2 2 6/6/18 4.68 2.48 2.45 5.3 N
## 3 3 6/6/18 3.05 1.77 4.62 2.99 A
Here I read the porewater dataset in and headed the first three lines
2.27.2 Scatter plot
ggplot(Porewater_data, aes(x=`Conc of chl (ug/L)`, y=`NH4 (uM)`, group=Nutrient)) + geom_point(aes(shape=Nutrient, color=Nutrient), size=2)+ theme_classic()+ theme(legend.background = element_rect(fill="gray"))+ geom_hline(yintercept=2, linetype="dashed", color = "black")+ geom_abline()+ scale_shape_manual(values=c(3, 16))+ scale_color_manual(values=c('red','blue'))
From the porewater dataset, I set x as concentration of chl and y as NH4 and grouped them by nutrients. I then distinguished the nutrient treatments using geom_point, which made them different schapes. I removed the lined background using the theme_classic argument. I added a mid-line and abline using the geom_hline and geom_abline argument respectively. I then manually changed the treatment colors to blue and red.
2.27.3 Scatterplot by date
SamplePoint<-factor(Porewater_data$Date, levels = c("6/6/18", "9/24/18", "12/17/18", "1/26/19"))
ggplot(Porewater_data, aes(x=SamplePoint, y=`NH4 (uM)`, group=Nutrient)) + geom_point(aes(shape=Nutrient, color=Nutrient), size=2)+ scale_shape_manual(values=c(3, 16))+ scale_color_manual(values=c('red','blue'))
First I made the dates a factor in the porewater dataset in order so they would be distributed simillarly in any future graphs, and named it Sample Point. I replace concentration of chl with Sample point for x, removed the theme, abline and halfline. This data show the scatter distribution of NH4 as it relates to nutrient treatment over 4 time points.
2.27.4 Boxplot
ggplot(Porewater_data, aes(x=SamplePoint, y=`NH4 (uM)`, fill=Nutrient))+ geom_boxplot() + theme_classic()+ labs(fill = "Treatment")+ theme(legend.background = element_rect(fill="gray"))
I used the same data construction as above but here I created a boxplot using geom_boxplot. I once again removed the background noise using theme_classic and changed the legend title to treatment. I would most likely use this figure to describe any interaction.