Chapter 7 Exploring potential silencing by miRNA

RNAseq data from Zhao et al. 2018 highlighted several differentially expressed genes (DEG) between epithelium and fiber cells. In parallel or in concert with RBP, miRNA might be responsible for the differential expression (DE) of genes in epithelium and fiber cells. To explore this hypothesis, we used a list of the top expressed micro RNA (miRNA) expressed in whole lens at several stage of development according to the miRNA dataset published by Khan et al. 2015. So as to identify potential regulation through degradation of DEG’s transcripts we looked for negative correlation between pairs gene and miRNA.

7.1 Identification of DEG and top-expressed miRNA

7.1.1 Zhao et al RNAseq data

So as to identify interesting DEG in Zhao et al. dataset, we computed mean \(\overline{x}\), standard deviation \(\sigma\) and relative difference \(\Delta\) as: \(\frac{\overline{x}^{epithelium}-\overline{x}^{fibers}}{\overline{x}^{epithelium}+\overline{x}^{fibers}}\) of FPKM for one gene per tissue per stage. We filtered the table based on following parameters:

  • relative difference between epithelium and fibers: \(|\Delta| >\) 0.25

  • mean FPKM in at least one tissue (without considering stages): \(\overline{x} >\) 1000

With these parameters we retained 1219 genes differentially expressed between lens and fiber cells.

7.1.2 Kahn et al. miRNA dataset

This dataset does not discriminate between epithelium and fiber cells. Taking into consideration that highly expressed miRNA might be We focus on miRNA with FPKM above 500 at a least one stage.

7.2 Negative correlation between miRNA and DEG

We computed expression’s correlation between our list of 140 miRNA and 1219 DEG. miRNA:DEG pairs showing correlation inferior to -0.75 were conserved. This threshold aims to conserve pairs that might be involved in silencing regulation and that might explain the differential expression between epithelial and fiber cells.

We found 20788 miRNA:DEG pairs answering this correlation parameters. This consider a combination of 137 miRNas and 1093.

7.3 Highlight predicted or validated interactions

With this list of negatively correlated pairs, we will interrogate multiple databases of miRNA:gene interactions.

See below for known validated interactions:

Table 7.1: Pairs miRNA:DEG verified experimentally
miRNA gene experiments
mmu-miR-107-3p Hif1a Western blot
mmu-miR-124-3p Cd164 Luciferase reporter assay, Microarray, qRT-PCR
mmu-miR-133a-3p Prkacb | Igf1r | Pola1 Flow, Immunofluorescence, Immunohistochemistry, Immunoprecipitaion, Luciferase reporter assay, qRT-PCR, Western blot | Luciferase reporter assay | Immunofluorescence, Luciferase reporter assay, Microarray, Western blot
mmu-miR-204-5p Ntrk2 Luciferase reporter assay, qRT-PCR, Western blot
mmu-miR-20a-5p App Luciferase reporter assay
mmu-miR-23a-3p Smad5 qRT-PCR, Western blot
mmu-miR-23b-3p Smad5 Luciferase reporter assay | In situ hybridization, Luciferase reporter assay, Microarray, Northern blot, qRT-PCR
mmu-miR-24-3p Smad5 In situ hybridization, Luciferase reporter assay, Microarray, Northern blot, qRT-PCR
mmu-miR-27a-3p Lrpprc qRT-PCR, Luciferase reporter assay, Western blot
mmu-miR-34c-5p Smad5 Luciferase reporter assay
mmu-miR-375-3p Yap1 | Pdk1 Immunohistochemistry, qRT-PCR, Western blot | Immunofluorescence, In situ hybridization, Luciferase reporter assay, qRT-PCR, Western blot | Luciferase reporter assay, qRT-PCR, Western blot
mmu-miR-99b-5p Mfge8 Luciferase reporter assay, qRT-PCR, Western blot

7.4 Regulation of Crystallin’s genes by miRNA

miRWalk database was interrogated for crystallin predicted miRNA in both human and mice. We filtered based on expression data from Khan et al. and looked for prediction in both human and mouse:

Table 7.2: Candidate miRNA predicted to bind to crystallin regulation (no experimental validation)
mirnaid humantargets mousetargets shared E15 E18 P0
let-7e-5p CRYAA, CRYBA4, CRYGB, CRYGC, CRYGS Cryaa, Crybb1, Crybb2, Crygb, Crygc, Crygd, Cryge, Crygf, Crygn CRYAA, CRYGB, CRYGC 2721.095 2351.445 2327.900
miR-744-5p CRYAA, CRYAB, CRYBA1, CRYBA2, CRYBB1, CRYBB2, CRYGA Cryaa, Cryab, Cryba2, Cryba4, Crybb2, Crygs CRYAA, CRYAB, CRYBA2, CRYBB2 1340.890 889.680 724.640
miR-423-5p CRYAA, CRYBB3, CRYGC, CRYGS Cryba1, Cryba4, Crybb2, Cryga, Crygb, Crygc, Crygd, Cryge, Crygf CRYGC 759.835 445.640 391.545
miR-181b-5p CRYAA, CRYAB, CRYGB, CRYGC Cryba4, Crybb1, Cryga, Crygb, Crygc, Crygd, Cryge, Crygf CRYGB, CRYGC 13609.130 14627.655 12768.755
miR-92a-1-5p CRYAB, CRYBB3, CRYGA, CRYGC, CRYGD, CRYGS Cryab, Crybb2, Crybb3, Cryga, Crygb CRYAB, CRYBB3, CRYGA 651.705 341.905 223.840
miR-541-5p CRYAA, CRYBB1, CRYGC Cryba1, Cryba2, Cryba4, Crybb1, Crygf, Crygs CRYBB1 4414.160 4063.510 4570.285
miR-181d-5p CRYAB, CRYGC Cryba1, Cryba4, Cryga, Crygb, Crygc, Crygd, Crygf CRYGC 3351.590 2355.050 1745.020
miR-210-3p CRYAB, CRYBA2, CRYGA, CRYGB, CRYGS Cryab, Crybb2, Crygd, Cryge CRYAB 576.235 645.760 876.680
miR-431-5p CRYAB, CRYBB3 Cryba4, Crybb1, Crybb2, Cryga, Crygc, Crygd, Crygs 559.865 256.145 238.090
miR-331-3p CRYBA1, CRYBA4, CRYBB1 Cryab, Cryba4, Crybb1, Crybb2, Crybb3, Crygd CRYBA4, CRYBB1 301.120 321.080 606.365
miR-133a-3p CRYBA2, CRYBB1, CRYGD Cryba2, Crybb1, Crybb2, Crybb3, Crygs CRYBA2, CRYBB1 4566.355 3689.930 7141.340
miR-423-3p CRYBA1, CRYGA, CRYGD Cryba2, Cryga, Crygb, Crygc, Crygs CRYGA 1829.670 1202.975 765.820
let-7c-5p CRYBB1, CRYGB, CRYGC Cryaa, Crygb, Crygd, Crygf CRYGB 1341.270 1455.530 1405.790
miR-24-3p CRYAA, CRYBA2 Cryaa, Crybb1, Cryga, Crygf, Crygn CRYAA 377.475 542.340 837.105
miR-31-5p CRYGA, CRYGS Crybb3, Crygc, Crygd, Crygs CRYGS 7317.845 5700.630 9052.220
miR-93-5p CRYAB Cryaa, Crygb, Crygc, Crygd, Crygn 4402.715 3161.065 2552.605
miR-127-3p CRYAB, CRYGC, CRYGN Crybb1, Crybb2 19788.955 15686.235 18170.400
let-7g-5p CRYGA Cryba1, Crygb, Crygd, Cryge 1437.645 2161.855 1262.400
miR-183-5p CRYAB, CRYGN Cryga, Crygb, Crygc 1381.615 3431.745 1078.885
miR-125b-2-3p CRYBA4, CRYBB1, CRYBB2 Cryaa, Crybb2 CRYBB2 204.040 261.860 472.260
miR-181a-5p CRYGS Crybb1, Crybb3, Crygs 45584.200 65691.180 53448.200
miR-92b-3p CRYGB, CRYGN Cryab, Crygb 27766.170 14352.145 9378.940
miR-25-3p CRYAA, CRYAB, CRYGN Cryaa CRYAA 10070.005 5884.985 4215.970
let-7a-5p CRYAA, CRYGB Cryaa, Crygb CRYAA, CRYGB 3892.035 5208.760 4621.925
miR-378a-3p CRYBA4, CRYBB2, CRYGA Crygs 2798.740 2866.830 4092.610
miR-19b-3p CRYGB, CRYGC Cryba1, Cryga 2130.480 1273.455 1739.070
miR-34c-5p CRYAA, CRYGS Cryaa, Cryba2 CRYAA 2067.450 1868.765 2646.510
miR-125b-5p CRYAA Cryaa, Cryga, Crygf CRYAA 2026.495 2733.485 2883.550
miR-20a-5p CRYAB Crygd, Cryge, Crygf 1662.725 1421.255 1169.450
miR-484 CRYGB Cryba1, Crybb3, Crygs 1070.745 958.280 799.570
let-7d-5p CRYAA, CRYGA, CRYGB Cryaa CRYAA 351.040 490.605 305.245
miR-1251-5p CRYBB1, CRYGB, CRYGC Crybb3 146.385 200.170 411.100
miR-193b-3p CRYGD, CRYGN Crybb3, Crygn CRYGN 42.495 32.265 97.995
miR-92a-3p CRYAB Cryab, Crygd CRYAB 78424.960 40102.225 25677.025
miR-204-5p CRYBA4, CRYGN Cryba4 CRYBA4 74195.665 64165.925 85982.685
miR-99b-5p CRYAB Cryaa, Cryga 38034.775 44824.330 39097.940
miR-106b-5p CRYAA, CRYGC Cryba1 664.570 538.765 665.655
miR-23a-3p CRYGD Cryba4, Crygb 220.985 290.395 500.590
miR-124-3p CRYAB, CRYGC Cryba2 162.970 291.235 83.165
miR-96-5p CRYAB, CRYBB2 Cryaa 52.725 183.410 59.185
miR-27b-3p CRYBA4 Crybb3 8015.050 10459.260 12127.460
let-7f-5p CRYBB1 Crygb 4164.680 5778.100 5275.050
miR-532-5p CRYGA Cryba1 811.490 661.110 657.065
miR-136-3p CRYGD Crygc 760.280 599.885 784.450
miR-19a-3p CRYGB Cryga 572.765 281.610 313.440
miR-27a-3p CRYBA4 Crybb3 389.905 495.750 1006.845

Chi, Sung Wook, Julie B. Zang, Aldo Mele, and Robert B. Darnell. 2009. “Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps.” Nature 460 (7254). Nature Publishing Group: 479–86. https://doi.org/10.1038/nature08170.

Cockburn, Diane M, Jason Charish, Nardos G Tassew, James Eubanks, Rod Bremner, Paolo Macchi, and Philippe P Monnier. 2012. “The double-stranded RNA-binding protein Staufen 2 regulates eye size.” Molecular and Cellular Neuroscience 51 (3-4). Elsevier Inc.: 101–11. https://doi.org/10.1016/j.mcn.2012.08.008.

Lachke, Salil A, Fowzan S Alkuraya, Stephen C Kneeland, Takbum Ohn, Anton Aboukhalil, Gareth R Howell, Irfan Saadi, et al. 2011. “Mutations in the RNA Granule Component TDRD7 Cause Cataract and Glaucoma” 331 (March): 1571–7.

Pirity, Melinda K, Wei Lin Wang, Louise V Wolf, Ernst R Tamm, Nicole Schreiber-Agus, and Ales Cvekl. 2007. “Rybp, a polycomb complex-associated protein, is required for mouse eye development.” BMC Developmental Biology 7: 1–14. https://doi.org/10.1186/1471-213X-7-39.

Siddam, Archana D, Carole Gautier-courteille, Linette Perez-campos, Justine Viet, Jeffrey M Gross, Luc Paillard, and Salil A Lachke. 2018. “The RNA-binding protein Celf1 post- transcriptionally regulates p27 Kip1 and Dnase2b to control fiber cell nuclear degradation in lens development,” 1–28.

Zhan, Shaohua, Tianxiao Wang, and Wei Ge. 2018. “Multiple roles of Ring 1 and YY1 binding protein in physiology and disease The roles of RYBP in development The roles of RYBP in the regulation of gene expression through the PcG complex and binding with” 22 (4): 2046–54. https://doi.org/10.1111/jcmm.13503.