References

Aczel, B., Hoekstra, R., Gelman, A., Wagenmakers, E.-J., Klugkist, I. G., Rouder, J. N., Vandekerckhove, J., Lee, M. D., Morey, R. D., Vanpaemel, W., Dienes, Z., & van Ravenzwaaij, D. (2020). Discussion points for Bayesian inference. Nature Human Behaviour, 1–3. https://doi.org/10.1038/s41562-019-0807-z
Agresti, A. (2015). Foundations of linear and generalized linear models. John Wiley & Sons. https://www.wiley.com/en-us/Foundations+of+Linear+and+Generalized+Linear+Models-p-9781118730034
Allan, A., Cook, D., Gayler, R., Kirk, H., Peng, R., & Saber, E. (2021). ochRe: Australia-themed colour palettes [Manual]. https://github.com/ropenscilabs/ochRe
Arnold, J. B. (2021). ggthemes: Extra themes, scales and geoms for ’ggplot2’. https://CRAN.R-project.org/package=ggthemes
Atkins, D. C., Baldwin, S. A., Zheng, C., Gallop, R. J., & Neighbors, C. (2013). A tutorial on count regression and zero-altered count models for longitudinal substance use data. Psychology of Addictive Behaviors, 27(1), 166. https://doi.org/10.1037/a0029508
Attali, D., & Baker, C. (2022). ggExtra: Add marginal histograms to ’ggplot2’, and more ’ggplot2’ enhancements. https://CRAN.R-project.org/package=ggExtra
Auguie, B. (2017). gridExtra: Miscellaneous functions for "grid" graphics. https://CRAN.R-project.org/package=gridExtra
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
Bates, D., Maechler, M., Bolker, B., & Steven Walker. (2022). lme4: Linear mixed-effects models using Eigen’ and S4. https://CRAN.R-project.org/package=lme4
Bayes, T. (1763). LII. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton, AMFR S. Philosophical Transactions of the Royal Society of London, 53, 370–418. https://royalsocietypublishing.org/doi/pdf/10.1098/rstl.1763.0053
BibTeX. (2020). http://www.bibtex.org/
Bliss, C. I. (1934). The method of probits. Science. https://doi.org/10.1126/science.79.2037.38
Bolger, N., Zee, K. S., Rossignac-Milon, M., & Hassin, R. R. (2019). Causal processes in psychology are heterogeneous. Journal of Experimental Psychology: General, 148(4), 601–618. https://doi.org/10.1037/xge0000558
Braumoeller, B. F. (2004). Hypothesis testing and multiplicative interaction terms. International Organization, 58(4), 807–820. https://doi.org/10.1017/S0020818304040251
Bryan, J., the STAT 545 TAs, & Hester, J. (2020). Happy Git and GitHub for the useR. https://happygitwithr.com
Bürkner, P.-C. (2020). Bayesian item response modeling in R with brms and Stan. http://arxiv.org/abs/1905.09501
Bürkner, P.-C. (2022a). Estimating distributional models with brms. https://CRAN.R-project.org/package=brms/vignettes/brms_distreg.html
Bürkner, P.-C. (2022b). Estimating multivariate models with brms. https://CRAN.R-project.org/package=brms/vignettes/brms_multivariate.html
Bürkner, P.-C. (2022c). Parameterization of response distributions in brms. https://CRAN.R-project.org/package=brms/vignettes/brms_families.html
Bürkner, P.-C. (2022d). Define custom response distributions with brms. https://CRAN.R-project.org/package=brms/vignettes/brms_customfamilies.html
Bürkner, P.-C. (2022e). Estimating non-linear models with brms. https://CRAN.R-project.org/package=brms/vignettes/brms_nonlinear.html
Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80(1), 1–28. https://doi.org/10.18637/jss.v080.i01
Bürkner, P.-C. (2018). Advanced Bayesian multilevel modeling with the R package brms. The R Journal, 10(1), 395–411. https://doi.org/10.32614/RJ-2018-017
Bürkner, P.-C. (2022f). brms reference manual, Version 2.18.0. https://CRAN.R-project.org/package=brms/brms.pdf
Bürkner, P.-C. (2022g). brms: Bayesian regression models using ’Stan. https://CRAN.R-project.org/package=brms
Bürkner, P.-C., Gabry, J., Kay, M., & Vehtari, A. (2021). posterior: Tools for working with posterior distributions [Manual].
Bürkner, P.-C., & Vuorre, M. (2019). Ordinal regression models in psychology: A tutorial. Advances in Methods and Practices in Psychological Science, 2(1), 77–101. https://doi.org/10.1177/2515245918823199
Campbell, H., & Gustafson, P. (2021). Re: Linde et al.(2021) factor, HDI-ROPE and frequentist equivalence testing are actually all equivalent. https://arxiv.org/abs/2104.07834
Carifio, J., & Perla, R. (2008). Resolving the 50-year debate around using and misusing Likert scales. Medical Education, 42(12), 1150–1152. https://doi.org/10.1111/j.1365-2923.2008.03172.x
Carifio, J., & Perla, R. J. (2007). Ten common misunderstandings, misconceptions, persistent myths and urban legends about Likert scales and Likert response formats and their antidotes. Journal of Social Sciences, 3(3), 106–116. https://thescipub.com/pdf/10.3844/jssp.2007.106.116.pdf
Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1). https://doi.org/10.18637/jss.v076.i01
Carvalho, C. M., Polson, N. G., & Scott, J. G. (2009). Handling sparsity via the horseshoe. Artificial Intelligence and Statistics, 73–80. http://proceedings.mlr.press/v5/carvalho09a/carvalho09a.pdf
Chandramouli, S. H., & Shiffrin, R. M. (2019). Commentary on Gronau and Wagenmakers. Computational Brain & Behavior, 2(1), 12–21. https://doi.org/10.1007/s42113-018-0017-1
Chen, M.-H., He, X., Shao, Q.-M., & Xu, H. (2003). A Monte Carlo gap test in computing HPD regions. In Development of Modern Statistics and Related Topics: Vols. Volume 1 (pp. 38–52). World Scientific. https://doi.org/10.1142/9789812796707_0004
Chen, M.-H., & Shao, Q.-M. (1999). Monte Carlo estimation of Bayesian credible and HPD intervals. Journal of Computational and Graphical Statistics, 8(1), 69–92. https://doi.org/10.1080/10618600.1999.10474802
Chung, Y., Rabe-Hesketh, S., Dorie, V., Gelman, A., & Liu, J. (2013). A nondegenerate penalized likelihood estimator for variance parameters in multilevel models. Psychometrika, 78(4), 685–709. https://doi.org/10.1007/s11336-013-9328-2
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd Edition). Routledge. https://doi.org/10.4324/9780203771587
Cumming, G. (2012). Understanding the new statistics: Effect sizes, confidence intervals, and meta-analysis. Routledge. https://www.routledge.com/Understanding-The-New-Statistics-Effect-Sizes-Confidence-Intervals-and/Cumming/p/book/9780415879682
Dale, A. I. (2012). A history of inverse probability: From Thomas Bayes to Karl Pearson. Springer Science & Business Media. https://www.springer.com/gp/book/9780387988078
Duane, S., Kennedy, A. D., Pendleton, B. J., & Roweth, D. (1987). Hybrid Monte Carlo. Physics Letters B, 195(2), 216–222. https://doi.org/10.1016/0370-2693(87)91197-X
Eckhardt, R. (1987). Stan Ulam, John von Neumann and the Monte Carlo method. Argonne, USA. https://library.sciencemadness.org/lanl1_a/lib-www/pubs/00326867.pdf
Efron, B., & Morris, C. (1977). Stein’s paradox in statistics. Scientific American, 236(5), 119–127. https://doi.org/10.1038/scientificamerican0577-119
Ellison., S. L. R. (2018). metRology: Support for metrological applications. https://CRAN.R-project.org/package=metRology
Enders, C. (2013). Centering predictors and contextual effects. In M. Scott, J. Simonoff, & B. Marx (Eds.), The SAGE Handbook of Multilevel Modeling (pp. 89–108). SAGE Publications Ltd. https://doi.org/10.4135/9781446247600.n6
Enders, C. K., & Tofighi, D. (2007). Centering predictor variables in cross-sectional multilevel models: A new look at an old issue. Psychological Methods, 12(2), 121. https://doi.org/10.1037/1082-989X.12.2.121
Fernandes, M., Walls, L., Munson, S., Hullman, J., & Kay, M. (2018). Uncertainty displays using quantile dotplots or CDFs improve transit decision-making. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (pp. 1–12). Association for Computing Machinery. https://doi.org/10.1145/3173574.3173718
Fernández i Marín, X. (2016). ggmcmc: Analysis of MCMC samples and Bayesian inference. Journal of Statistical Software, 70(9), 1–20. https://doi.org/10.18637/jss.v070.i09
Fernández i Marín, X. (2021). ggmcmc: Tools for analyzing MCMC simulations from Bayesian inference [Manual]. https://CRAN.R-project.org/package=ggmcmc
Firke, S. (2020). janitor: Simple tools for examining and cleaning dirty data. https://CRAN.R-project.org/package=janitor
Fisher, R. A. (1925). Statistical methods for research workers, 11th ed. rev. Edinburgh. https://psycnet.apa.org/record/1925-15003-000
Gabry, J. (2022). Graphical posterior predictive checks using the bayesplot package. https://CRAN.R-project.org/package=bayesplot/vignettes/graphical-ppcs.html
Gabry, J., & Mahr, T. (2022). bayesplot: Plotting for Bayesian models. https://CRAN.R-project.org/package=bayesplot
Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A. (2019). Visualization in Bayesian workflow. Journal of the Royal Statistical Society: Series A (Statistics in Society), 182(2), 389–402. https://doi.org/10.1111/rssa.12378
Garnier, S. (2021). viridis: Default color maps from ’matplotlib’ [Manual]. https://CRAN.R-project.org/package=viridis
Gelman, A. (2005). Analysis of variance–Why it is more important than ever. Annals of Statistics, 33(1), 1–53. https://doi.org/10.1214/009053604000001048
Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Analysis, 1(3), 515–534. https://doi.org/10.1214/06-BA117A
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (Third Edition). CRC press. https://stat.columbia.edu/~gelman/book/
Gelman, A., Goodrich, B., Gabry, J., & Vehtari, A. (2019). R-squared for Bayesian regression models. The American Statistician, 73(3), 307–309. https://doi.org/10.1080/00031305.2018.1549100
Gelman, A., Hill, J., & Yajima, M. (2012). Why we (usually) don’t have to worry about multiple comparisons. Journal of Research on Educational Effectiveness, 5(2), 189–211. https://doi.org/10.1080/19345747.2011.618213
Grolemund, G., & Wickham, H. (2017). R for data science. O’Reilly. https://r4ds.had.co.nz
Gronau, Q. F., & Wagenmakers, E.-J. (2019a). Limitations of Bayesian leave-one-out cross-validation for model selection. Computational Brain & Behavior, 2(1), 1–11. https://doi.org/10.1007/s42113-018-0011-7
Gronau, Q. F., & Wagenmakers, E.-J. (2019b). Rejoinder: More limitations of Bayesian leave-one-out cross-validation. Computational Brain & Behavior, 2(1), 35–47. https://doi.org/10.1007/s42113-018-0022-4
Guber, L., Deborah. (1999). Getting what you pay for: The debate over equity in public school expenditures. Journal of Statistics Education, 7(2). https://www.semanticscholar.org/paper/Getting-What-You-Pay-For-The-Debate-Over-Equity-in-Guber/29c30e9dc77b56340faa5e6ad35e0741a5a83d49
Hamaker, E. L. (2012). Why researchers should think "within-person": A paradigmatic rationale. In Handbook of research methods for studying daily life (pp. 43–61). The Guilford Press. https://www.guilford.com/books/Handbook-of-Research-Methods-for-Studying-Daily-Life/Mehl-Conner/9781462513055
Hanley, J., A, & Shapiro, S., H. (1994). Sexual activity and the lifespan of male fruitflies: A dataset that gets attention. Journal of Statistics Education, 2(1), null. https://doi.org/10.1080/10691898.1994.11910467
Henry, L., & Wickham, H. (2020). purrr: Functional programming tools. https://CRAN.R-project.org/package=purrr
Heyns, E. (2020). Better BibTeX for zotero. https://retorque.re/zotero-better-bibtex/
Hocking, T. D. (2021). Directlabels: Direct labels for multicolor plots [Manual]. https://CRAN.R-project.org/package=directlabels
Hokusai, K. (1820–1831). The great wave off Kanagawa.
Hugh-Jones, D. (2020). santoku: A versatile cutting tool. https://CRAN.R-project.org/package=santoku
Hyndman, R. J. (1996). Computing and graphing highest density regions. The American Statistician, 50(2), 120–126. https://doi.org/10.1080/00031305.1996.10474359
Jean, J. (2009). RIFT SCULL.
Jeffreys, H. (1961). Theory of probability. Oxford University Press. https://global.oup.com/academic/product/theory-of-probability-9780198503682?cc=us&lang=en&
Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773–795. https://www.stat.washington.edu/raftery/Research/PDF/kass1995.pdf
Kay, M. (2022a). Slab + interval stats and geoms. https://mjskay.github.io/ggdist/articles/slabinterval.html
Kay, M. (2021). Extracting and visualizing tidy draws from brms models. https://mjskay.github.io/tidybayes/articles/tidy-brms.html
Kay, M. (2022b). tidybayes: Tidy data and ’geoms’ for Bayesian models. https://CRAN.R-project.org/package=tidybayes
Kay, M., Kola, T., Hullman, J. R., & Munson, S. A. (2016). When (ish) is my bus? User-centered visualizations of uncertainty in everyday, mobile predictive systems. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 5092–5103. https://doi.org/10.1145/2858036.2858558
Kelley, K., & Preacher, K. J. (2012). On effect size. Psychological Methods, 17(2), 137. https://doi.org/10.1037/a0028086
Klein, O., Hardwicke, T. E., Aust, F., Breuer, J., Danielsson, H., Hofelich Mohr, A., IJzerman, H., Nilsonne, G., Vanpaemel, W., & Frank, M. C. (2018). A practical guide for transparency in psychological science. Collabra: Psychology, 4(1), 1–15. https://doi.org/10.1525/collabra.158
Kolmogorov, A. N., & Bharucha-Reid, A. T. (1956). Foundations of the theory of probability: Second English Edition. Chelsea Publishing Company. https://www.york.ac.uk/depts/maths/histstat/kolmogorov_foundations.pdf
Kruschke, J. K. (2013). Posterior predictive checks can and should be Bayesian: Comment on Gelman and Shalizi, Philosophy and the practice of Bayesian statistics.” British Journal of Mathematical and Statistical Psychology, 66(1), 45–56. https://doi.org/10.1111/j.2044-8317.2012.02063.x
Kruschke, J. K. (2015). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Academic Press. https://sites.google.com/site/doingbayesiandataanalysis/
Kruschke, J. K. (2021). Bayesian analysis reporting guidelines. Nature Human Behaviour, 5(10), 1282–1291. https://doi.org/10.1038/s41562-021-01177-7
Kruschke, J. K., & Liddell, T. M. (2018). The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin & Review, 25(1), 178–206. https://doi.org/10.3758/s13423-016-1221-4
Kurz, A. S. (2023a). Statistical Rethinking with brms, ggplot2, and the tidyverse (version 1.3.0). https://bookdown.org/content/3890/
Kurz, A. S. (2023b). Statistical Rethinking with brms, ggplot2, and the tidyverse: Second Edition (version 0.4.0). https://bookdown.org/content/4857/
Lakens, D., & Delacre, M. (2018). Equivalence testing and the second generation p-value. https://doi.org/10.31234/osf.io/7k6ay
Lakens, D., McLatchie, N., Isager, P. M., Scheel, A. M., & Dienes, Z. (2020). Improving inferences about null effects with Bayes factors and equivalence tests. The Journals of Gerontology: Series B, 75(1), 45–57. https://doi.org/10.1093/geronb/gby065
Lakens, D., Scheel, A. M., & Isager, P. M. (2018). Equivalence testing for psychological research: A tutorial. Advances in Methods and Practices in Psychological Science, 1(2), 259–269. https://doi.org/10.1177/2515245918770963
Lawlor, J. (2020). PNWColors: Color palettes inspired by nature in the US Pacific Northwest [Manual]. https://CRAN.R-project.org/package=PNWColors
Lee, M. D., & Webb, M. R. (2005). Modeling individual differences in cognition. Psychonomic Bulletin & Review, 12(4), 605–621. https://doi.org/10.3758/BF03196751
Legler, J., & Roback, P. (2019). Broadening your statistical horizons: Generalized linear models and multilevel models. https://bookdown.org/roback/bookdown-bysh/
Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 22 140, 55–55. https://legacy.voteview.com/pdf/Likert_1932.pdf
Linde, M., Tendeiro, J. N., Selker, R., Wagenmakers, E.-J., & van Ravenzwaaij, D. (2021). Decisions about equivalence: A comparison of TOST, HDI-ROPE, and the Bayes factor. Psychological Methods. https://doi.org/10.1037/met0000402
Littlefield, T. (2020). lisa: Color palettes from color lisa [Manual]. https://CRAN.R-project.org/package=lisa
Liu, C. C., & Aitkin, M. (2008). Bayes factors: Prior sensitivity and model generalizability. Journal of Mathematical Psychology, 52(6), 362–375. https://doi.org/10.1016/j.jmp.2008.03.002
Lucas, T. (2016). palettetown: Use Pokemon inspired colour palettes [Manual]. https://CRAN.R-project.org/package=palettetown
Luce, R. D. (2012). Individual choice behavior: A theoretical analysis. Courier Corporation. https://books.google.com?id=ERQsKkPiKkkC
Luce, R. D. (2008). Luce’s choice axiom. Scholarpedia, 3(12), 8077. https://doi.org/10.4249/scholarpedia.8077
MacKay, D. J. (2003). Information theory, inference and learning algorithms. Cambridge University Press. https://www.inference.org.uk/itprnn/book.pdf
Martone, M. E., Garcia-Castro, A., & VandenBos, G. R. (2018). Data sharing in psychology. The American Psychologist, 73(2), 111–125. https://doi.org/10.1037/amp0000242
McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in R and Stan (Second Edition). CRC Press. https://xcelab.net/rm/statistical-rethinking/
McElreath, R. (2015). Statistical rethinking: A Bayesian course with examples in R and Stan. CRC press. https://xcelab.net/rm/statistical-rethinking/
McGrayne, S. B. (2011). The theory that would not die: How Bayes’ rule cracked the enigma code, hunted down Russian submarines, & emerged triumphant from two centuries of controversy. Yale University Press. https://yalebooks.yale.edu/book/9780300188226/theory-would-not-die
McWhite, C. D., & Wilke, C. O. (2021). colorblindr: Simulate colorblindness in R figures [Manual]. https://github.com/clauswilke/colorblindr
Merkle, E. C., & Rosseel, Y. (2018). blavaan: Bayesian structural equation models via parameter expansion. Journal of Statistical Software, 85(4), 1–30. https://doi.org/10.18637/jss.v085.i04
Merkle, E. C., Rosseel, Y., & Goodrich, B. (2022). blavaan: Bayesian latent variable analysis. https://CRAN.R-project.org/package=blavaan
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087–1092. https://doi.org/10.1063/1.1699114
Miller, D. L. (2021). beyonce: Beyoncé colour palettes for R. https://github.com/dill/beyonce
Miller, J. (2009). What is the probability of replicating a statistically significant effect? Psychonomic Bulletin & Review, 16(4), 617–640. https://doi.org/10.3758/PBR.16.4.617
Müller, K., & Wickham, H. (2022). tibble: Simple data frames. https://CRAN.R-project.org/package=tibble
Nakagawa, S., & Foster, T. M. (2004). The case against retrospective statistical power analyses with an introduction to power analysis. Acta Ethologica, 7(2), 103–108. https://doi.org/10.1007/s10211-004-0095-z
Navarro, D. (2019). Learning statistics with R. https://learningstatisticswithr.com
Navarro, D. J. (2019). Between the devil and the deep blue sea: Tensions between scientific judgement and statistical model selection. Computational Brain & Behavior, 2(1), 28–34. https://doi.org/10.1007/s42113-018-0019-z
Neal, R. (2011). MCMC using Hamiltonian dynamics. In S. Brooks, A. Gelman, G. Jones, & X.-L. Meng (Eds.), Handbook of Markov chain Monte Carlo (pp. 116–162). London, United Kingdom: Chapman & Hall/CRC Press. https://arxiv.org/pdf/1206.1901.pdf
Neal, R. M. (1994). An improved acceptance procedure for the hybrid Monte Carlo algorithm. Journal of Computational Physics, 111(1), 194–203. https://doi.org/10.1006/jcph.1994.1054
Nelder, J. A., & Wedderburn, R. W. (1972). Generalized linear models. Journal of the Royal Statistical Society: Series A (General), 135(3), 370–384. https://doi.org/10.2307/2344614
Nicenboim, B., Schad, D., & Vasishth, S. (2021). An introduction to Bayesian data analysis for cognitive science. https://vasishth.github.io/bayescogsci/book/
Norman, G. (2010). Likert scales, levels of measurement and the “laws” of statistics. Advances in Health Sciences Education, 15(5), 625–632. https://doi.org/10.1007/s10459-010-9222-y
O’Keefe, D. J. (2007). Brief report: Post hoc power, observed power, a priori power, retrospective power, prospective power, achieved power: Sorting out appropriate uses of statistical power analyses. Communication Methods and Measures, 1(4), 291–299. https://doi.org/10.1080/19312450701641375
Pedersen, Thomas Lin. (n.d.). Draw polygons with expansion/contraction and/or rounded corners geom_shape. Retrieved September 11, 2020, from https://ggforce.data-imaginist.com/reference/geom_shape.html
Pedersen, Thomas L. (2020a). Adding annotation and style. https://patchwork.data-imaginist.com/articles/guides/annotation.html
Pedersen, Thomas L. (2020b). Plot assembly. https://patchwork.data-imaginist.com/articles/guides/assembly.html
Pedersen, Thomas Lin. (2021). ggforce: Acceleratingggplot2 [Manual]. https://CRAN.R-project.org/package=ggforce
Pedersen, Thomas Lin. (2022). patchwork: The composer of plots. https://CRAN.R-project.org/package=patchwork
Pedersen, Thomas Lin, & Crameri, F. (2021). scico: Colour palettes based on the scientific colour-maps [Manual]. https://CRAN.R-project.org/package=scico
Pek, J., & Flora, D. B. (2018). Reporting effect sizes in original psychological research: A discussion and tutorial. Psychological Methods, 23(2), 208. https://doi.org/https://doi.apa.org/fulltext/2017-10871-001.html
Peng, R. D. (2020). R programming for data science. https://bookdown.org/rdpeng/rprogdatascience/
Piironen, J., & Vehtari, A. (2017). Sparsity information and regularization in the horseshoe and other shrinkage priors. Electronic Journal of Statistics, 11(2), 5018–5051. https://doi.org/10.1214/17-EJS1337SI
Plummer, M., Best, N., Cowles, K., & Vines, K. (2006). CODA: Convergence diagnosis and output analysis for MCMC. R News, 6(1), 7–11. https://journal.r-project.org/archive/
Plummer, M., Best, N., Cowles, K., Vines, K., Sarkar, D., Bates, D., Almond, R., & Magnusson, A. (2020). coda: Output analysis and diagnostics for MCMC [Manual]. https://CRAN.R-project.org/package=coda
R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Revelle, W. (2022). psych: Procedures for psychological, psychometric, and personality research. https://CRAN.R-project.org/package=psych
Ripley, B. (2022). MASS: Support functions and datasets for venables and Ripley’s MASS. https://CRAN.R-project.org/package=MASS
Rosa, L., Rosa, E., Sarner, L., & Barrett, S. (1998). A close look at therapeutic touch. JAMA, 279(13), 1005–1010. https://doi.org/10.1001/jama.279.13.1005
Rouder, J. N. (2016). The what, why, and how of born-open data. Behavior Research Methods, 48(3), 1062–1069. https://doi.org/10.3758/s13428-015-0630-z
Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56(5), 356–374. https://doi.org/10.1016/j.jmp.2012.08.001
Roy Rosenzweig Center for History and New Media. (2020). Zotero. https://www.zotero.org/
Schiettekatte, N. M. D., Brandl, S. J., & Casey, J. M. (2022). fishualize: Color palettes based on fish species [Manual]. https://CRAN.R-project.org/package=fishualize
Schloerke, B., Crowley, J., Di Cook, Briatte, F., Marbach, M., Thoen, E., Elberg, A., & Larmarange, J. (2021). GGally: Extension to ’ggplot2’. https://CRAN.R-project.org/package=GGally
Skinner, B. F. (1956). A case history in scientific method. American Psychologist, 11(5), 221–233. https://doi.org/10.1037/h0047662
Snee, R. D. (1974). Graphical display of two-way contingency tables. The American Statistician, 28(1), 9–12. https://doi.org/10.1080/00031305.1974.10479053
Stan Development Team. (2022a). Accessing the contents of a stanfit object. https://CRAN.R-project.org/package=rstan/vignettes/stanfit-objects.html
Stan Development Team. (2022b). Stan reference manual, Version 2.31. https://mc-stan.org/docs/reference-manual/index.html
Stan Development Team. (2022c). Stan user’s guide, Version 2.31. https://mc-stan.org/docs/stan-users-guide/index.html
Steidl, R. J., Hayes, J. P., & Schauber, E. (1997). Statistical power analysis in wildlife research. The Journal of Wildlife Management, 61(2), 270. https://doi.org/10.2307/3802582
Sun, S., Pan, W., & Wang, L. L. (2011). Rethinking observed power: Concept, practice, and implications. Methodology, 7(3), 81–87. https://doi.org/10.1027/1614-2241/a000025
Thomas, L. (1997). Retrospective power analysis. Conservation Biology, 11(1), 276–280. https://doi.org/10.1046/j.1523-1739.1997.96102.x
Vanpaemel, W. (2010). Prior sensitivity in theory testing: An apologia for the Bayes factor. Journal of Mathematical Psychology, 54(6), 491–498. https://doi.org/10.1016/j.jmp.2010.07.003
Vehtari, A., & Gabry, J. (2022a). Using the loo package (Version \(>\)= 2.0.0). https://CRAN.R-project.org/package=loo/vignettes/loo2-example.html
Vehtari, A., & Gabry, J. (2022b, March 23). Bayesian stacking and pseudo-BMA weights using the loo package. https://CRAN.R-project.org/package=loo/vignettes/loo2-weights.html
Vehtari, A., Gabry, J., Magnusson, M., Yao, Y., & Gelman, A. (2022). loo: Efficient leave-one-out cross-validation and WAIC for bayesian models. https://CRAN.R-project.org/package=loo/
Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27(5), 1413–1432. https://doi.org/10.1007/s11222-016-9696-4
Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P.-C. (2021). Rank-normalization, folding, and localization: An improved \(\widehat{R}\) for assessing convergence of MCMC (with Discussion). Bayesian Analysis, 16(2), 667–718. https://doi.org/10.1214/20-BA1221
Vehtari, A., Simpson, D. P., Yao, Y., & Gelman, A. (2019). Limitations of Limitations of Bayesian leave-one-out cross-validation for model selection.” Computational Brain & Behavior, 2(1), 22–27. https://doi.org/10.1007/s42113-018-0020-6
Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (Fourth Edition). Springer. http://www.stats.ox.ac.uk/pub/MASS4
Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14(5), 779–804. https://doi.org/10.3758/BF03194105
Wagenmakers, E.-J., Lodewyckx, T., Kuriyal, H., & Grasman, R. (2010). Bayesian hypothesis testing for psychologists: A tutorial on the Savage method. Cognitive Psychology, 60(3), 158–189. https://doi.org/10.1016/j.cogpsych.2009.12.001
Weber, S., & Bürkner, P.-C. (2022). Running brms models with within-chain parallelization. https://CRAN.R-project.org/package=brms/vignettes/brms_threading.html
Wetzels, R., Grasman, R. P. P. P., & Wagenmakers, E.-J. (2012). A default Bayesian hypothesis test for ANOVA designs. The American Statistician, 66(2), 104–111. https://doi.org/10.1080/00031305.2012.695956
Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., & Wagenmakers, E.-J. (2011). Statistical evidence in experimental psychology: An empirical comparison using 855 t tests. Perspectives on Psychological Science, 6(3), 291–298. https://doi.org/10.1177/1745691611406923
Wickham, H. (2007). Reshaping data with the reshape package. Journal of Statistical Software, 21(12), 1–20. https://doi.org/10.18637/jss.v021.i12
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. https://ggplot2-book.org/
Wickham, H. (2019). stringr: Simple, consistent wrappers for common string operations. https://CRAN.R-project.org/package=stringr
Wickham, H. (2020a). cubelyr: A data cube ’dplyr’ backend. https://CRAN.R-project.org/package=cubelyr
Wickham, H. (2020b). forcats: Tools for working with categorical variables (factors). https://CRAN.R-project.org/package=forcats
Wickham, H. (2020c). reshape2: Flexibly reshape data: A reboot of the reshape package. https://CRAN.R-project.org/package=reshape2
Wickham, H. (2020d). The tidyverse style guide. https://style.tidyverse.org/
Wickham, H. (2022). tidyverse: Easily install and load the ’tidyverse’. https://CRAN.R-project.org/package=tidyverse
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., Woo, K., Yutani, H., & Dunnington, D. (2022). ggplot2: Create elegant data visualisations using the grammar of graphics. https://CRAN.R-project.org/package=ggplot2
Wickham, H., François, R., Henry, L., & Müller, K. (2020). dplyr: A grammar of data manipulation. https://CRAN.R-project.org/package=dplyr
Wickham, H., & Henry, L. (2020). tidyr: Tidy messy data. https://CRAN.R-project.org/package=tidyr
Wickham, H., Hester, J., & Francois, R. (2018). readr: Read rectangular text data. https://CRAN.R-project.org/package=readr
Wilke, C. O. (2020a). Themes. https://wilkelab.org/cowplot/articles/themes.html
Wilke, C. O. (2019). Fundamentals of data visualization. https://clauswilke.com/dataviz/
Wilke, C. O. (2020b). cowplot: Streamlined plot theme and plot annotations for ggplot2 [Manual]. https://wilkelab.org/cowplot/
Wilke, C. O. (2021). ggridges: Ridgeline Plots in ’ggplot2. https://CRAN.R-project.org/package=ggridges
Williams, Donald R., Martin, S. R., Liu, S., & Rast, P. (2021). Bayesian multivariate mixed-effects location scale modeling of longitudinal relations among affective traits, states, and physical activity. European Journal of Psychological Assessment. https://doi.org/10.1027/1015-5759/a000624
Williams, Donald R., Zimprich, D. R., & Rast, P. (2019). A Bayesian nonlinear mixed-effects location scale model for learning. Behavior Research Methods, 51(5), 1968–1986. https://doi.org/10.3758/s13428-019-01255-9
Xie, Y. (2022). Bookdown: Authoring books and technical documents with R Markdown. Chapman and Hall/CRC. https://bookdown.org/yihui/bookdown/
Xie, Y., Allaire, J. J., & Grolemund, G. (2022). R Markdown: The definitive guide. Chapman and Hall/CRC. https://bookdown.org/yihui/rmarkdown/
Yao, Y., Vehtari, A., Simpson, D., & Gelman, A. (2018). Using stacking to average Bayesian predictive distributions (with discussion). Bayesian Analysis, 13(3), 917–1007. https://doi.org/10.1214/17-BA1091
Zhu, M., & Lu, A. Y. (2004). The counter-intuitive non-informative prior for the Bernoulli family. Journal of Statistics Education, 12(2), 3. https://doi.org/10.1080/10691898.2004.11910734