) Q3
## # A tibble: 437 x 28
## PID county state area poptotal popdensity popwhite popblack popamerindian
## <int> <chr> <chr> <dbl> <int> <dbl> <int> <int> <int>
## 1 561 ADAMS IL 0.052 66090 1271. 63917 1702 98
## 2 562 ALEXA… IL 0.014 10626 759 7054 3496 19
## 3 563 BOND IL 0.022 14991 681. 14477 429 35
## 4 564 BOONE IL 0.017 30806 1812. 29344 127 46
## 5 565 BROWN IL 0.018 5836 324. 5264 547 14
## 6 566 BUREAU IL 0.05 35688 714. 35157 50 65
## 7 567 CALHO… IL 0.017 5322 313. 5298 1 8
## 8 568 CARRO… IL 0.027 16805 622. 16519 111 30
## 9 569 CASS IL 0.024 13437 560. 13384 16 8
## 10 570 CHAMP… IL 0.058 173025 2983. 146506 16559 331
## # … with 427 more rows, and 19 more variables: popasian <int>, popother <int>,
## # percwhite <dbl>, percblack <dbl>, percamerindan <dbl>, percasian <dbl>,
## # percother <dbl>, popadults <int>, perchsd <dbl>, percollege <dbl>,
## # percprof <dbl>, poppovertyknown <int>, percpovertyknown <dbl>,
## # percbelowpoverty <dbl>, percchildbelowpovert <dbl>, percadultpoverty <dbl>,
## # percelderlypoverty <dbl>, inmetro <int>, category <chr>
g3 <- ggplot(midwest, aes(area, poptotal,size=popdensity)) + geom_point(aes(color=state),alpha=0.4) +
xlim(0, 0.1) +
ylim(0, 500000) +
theme_classic() +
labs(title="Scatterplot",subtitle = "Area Vs Population",x="Area",y="Population",caption = "Source: midwest")
Final Output
g3 +
geom_smooth(se=F,show.legend=F)
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'