3 Assignment K-Means Clustering

Let’s apply K-means clustering on the same data set we used for kNN.

You have to determine a number of still unknown clusters of, in this case, makes and models of cars.

There is no criterion that we can use as a training and test set!

The questions and assignments are:

  • Read the file (cars.csv).
  • You have seen from the description in the previous assignment that the variable for origin (US, versus non-US) is a factor variable. We cannot calculate distances from a factor variable. Because we want to include it anyway, we have to make it a dummy (0/1) variable.
  • Normalize the data.
  • Determine the number of clusters using the (graphical) method described above.
  • Determine the clustering, and add the cluster to the data set.
  • Describe the clusters in terms of all variables used in the clustering.
  • Characterize (label) the clusters.
  • Repeat the exercise with more or fewer clusters, and decide if the new solutions are better than the original solution!

3.1 Solution: Some Help

Read the data:

rm(list=ls())
cars<-read.csv("cars.csv",header=TRUE)
str(cars)
## 'data.frame':    74 obs. of  10 variables:
##  $ origin       : chr  "usa" "usa" "usa" "usa" ...
##  $ price        : num  4099 4749 3799 4816 7827 ...
##  $ mileage      : num  8.8 6.8 8.8 8 6 7.2 10.4 8 6.4 7.6 ...
##  $ repair       : num  3 3 3 3 4 3 3 3 3 3 ...
##  $ headspace    : num  6.25 7.5 7.5 11.25 10 ...
##  $ trunkspace   : num  308 308 336 448 560 588 280 448 476 364 ...
##  $ weight       : num  1318 1508 1188 1462 1836 ...
##  $ length       : num  465 432 420 490 555 ...
##  $ turningcircle: num  12.2 12.2 10.7 12.2 13.1 ...
##  $ gear_ratio   : num  3.58 2.53 3.08 2.93 2.41 2.73 2.87 2.93 2.93 3.08 ...

And make a function for normalizing your data:

# normalize the data
normalizer <- function(x){
  return((x-min(x))/(max(x)-min(x)))
}

And normalize the data, after creating a dummy for origin.

cars2 <- cars # copy of cars

# Add dummy for origin
cars2$originDum <- ifelse(cars2$origin=="usa",1,0)
str(cars2)
## 'data.frame':    74 obs. of  11 variables:
##  $ origin       : chr  "usa" "usa" "usa" "usa" ...
##  $ price        : num  4099 4749 3799 4816 7827 ...
##  $ mileage      : num  8.8 6.8 8.8 8 6 7.2 10.4 8 6.4 7.6 ...
##  $ repair       : num  3 3 3 3 4 3 3 3 3 3 ...
##  $ headspace    : num  6.25 7.5 7.5 11.25 10 ...
##  $ trunkspace   : num  308 308 336 448 560 588 280 448 476 364 ...
##  $ weight       : num  1318 1508 1188 1462 1836 ...
##  $ length       : num  465 432 420 490 555 ...
##  $ turningcircle: num  12.2 12.2 10.7 12.2 13.1 ...
##  $ gear_ratio   : num  3.58 2.53 3.08 2.93 2.41 2.73 2.87 2.93 2.93 3.08 ...
##  $ originDum    : num  1 1 1 1 1 1 1 1 1 1 ...
table(cars2$origin,cars2$originDum)
##        
##          0  1
##   other 22  0
##   usa    0 52
cars2$origin<-NULL

# normalize
cars2_n <- as.data.frame(lapply(cars2, normalizer))
summary(cars2_n)
##      price            mileage           repair        headspace     
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.07366   1st Qu.:0.2069   1st Qu.:0.500   1st Qu.:0.2857  
##  Median :0.13599   Median :0.2759   Median :0.500   Median :0.4286  
##  Mean   :0.22784   Mean   :0.3206   Mean   :0.598   Mean   :0.4266  
##  3rd Qu.:0.24108   3rd Qu.:0.4397   3rd Qu.:0.750   3rd Qu.:0.5714  
##  Max.   :1.00000   Max.   :1.0000   Max.   :1.000   Max.   :1.0000  
##    trunkspace         weight           length       turningcircle   
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.2917   1st Qu.:0.1591   1st Qu.:0.3077   1st Qu.:0.2504  
##  Median :0.5000   Median :0.4643   Median :0.5549   Median :0.4501  
##  Mean   :0.4865   Mean   :0.4089   Mean   :0.5048   Mean   :0.4329  
##  3rd Qu.:0.6528   3rd Qu.:0.5974   3rd Qu.:0.6786   3rd Qu.:0.6007  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##    gear_ratio       originDum     
##  Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.3176   1st Qu.:0.0000  
##  Median :0.4500   Median :1.0000  
##  Mean   :0.4852   Mean   :0.7027  
##  3rd Qu.:0.6838   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000

The normalized data to use, are now in cars2_n.

Decide on the best number of clusters:

# optimal number of clusters
c <- 10 # max number for wss-plot
wss <- (nrow(cars2_n)-1)*sum(apply(cars2_n,2,var)); wss[1]
## [1] 52.77075
for (i in 2:c) wss[i] <- sum(kmeans(cars2_n, centers=i)$withinss)
plot(1:c, wss, type="b", xlab="# of Clusters", ylab="Heterogeneity")