4 The Cointegrated VAR

This chapter contains the replication of the material of Chapter 7 of Juselius (2006).

4.1 Estimation

Load the function ca_jo_jus06_fun() from GitHub.

source("https://raw.githubusercontent.com/mmoessler/juselius-2006/main/R/ca_jo_jus06_fun.R")

Call the function ca_jo_jus06_fun() for the Danish data.

Include dummies Dt754, Dp764 and Dp831 unrestricted.

Include dummy Ds831 restricted to the cointegrating relationship.

Estimation with trend in the cointegrating relationship, i.e., call ca_jo_jus06_fun(() with ecdet = c("trend").

# with trend in cir, with shift dummy and with Ds831 in cir
ca.jo.res.01 <- ca_jo_jus06_fun(x = data[,c("Lm3rC","Lyr","Dpy","Rm","Rb")], type = c("trace"), ecdet = c("trend"), K = 2, spec = c("transitory"), data = data)

Estimation without trend in the cointegrating relationship, i.e., call ca_jo_jus06_fun(() with ecdet = c("none").

# without trend in cir, with shift dummy and with Ds831 in cir
ca.jo.res.02 <- ca_jo_jus06_fun(x = data[,c("Lm3rC","Lyr","Dpy","Rm","Rb")], type = c("trace"), ecdet = c("none"), K = 2, spec = c("transitory"), data = data)

Note, the function ca_jo_jus06_fun() is based on the function ca.jo() from the library urca (see also Pfaff (2008)). The dummy variables are added inside the function, i.e., “hard.” Check the code on GitHub (mmoessler/juselius-2006/main/R/ca_jo_jus06_fun.R) for more information.

4.2 Results

Lambdas \(\widehat{\lambda}_i\) (see Table 7.1 of Juselius (2006))

round(Re(ca.jo.res.01$lambda), 2) 
## [1] 0.35 0.23 0.20 0.09 0.06 0.00 0.00

Non-nomralized eigenvectors \(\widehat{v}_i\) (see Table 7.1 of Juselius (2006))

round(Re(ca.jo.res.01$Vorg), 2)
##          Lm3rC.l1  Lyr.l1  Dpy.l1  Rm.l1   Rb.l1  Ds831 trend.l1
## Lm3rC.l1    12.66  -18.44   -1.90   8.86    1.07  -6.66    -5.64
## Lyr.l1      -6.68   18.90   12.48  14.18   18.32   3.79    -1.49
## Dpy.l1     193.80   63.59    8.89   7.50   -2.54   0.35    -6.11
## Rm.l1      -57.07  156.97  499.29 100.14 -148.22 -17.94  -116.62
## Rb.l1      110.00 -147.57 -310.13 211.44   60.12 -38.92    83.95
## Ds831       -0.35    4.50   -2.84  -0.07    1.00  -2.39    -0.93
## trend.l1     0.01    0.01   -0.02  -0.03   -0.10   0.05     0.04

Normalized eigenvectors \(\widehat{\beta}_i\) (see Table 7.1 of Juselius (2006))

V.01 <- cbind(cbind(ca.jo.res.01$Vorg[,1]/ca.jo.res.01$Vorg[3,1]),
              cbind(ca.jo.res.01$Vorg[,2]/ca.jo.res.01$Vorg[1,2]),
              cbind(ca.jo.res.01$Vorg[,3]/ca.jo.res.01$Vorg[4,3]),
              cbind(ca.jo.res.01$Vorg[,4]/ca.jo.res.01$Vorg[2,4]),
              cbind(ca.jo.res.01$Vorg[,5]/ca.jo.res.01$Vorg[5,5]),
              cbind(ca.jo.res.01$Vorg[,6]/ca.jo.res.01$Vorg[1,6]),
              cbind(ca.jo.res.01$Vorg[,7]/ca.jo.res.01$Vorg[1,7]))

round(V.01, 2)
##           [,1]  [,2]  [,3]  [,4]  [,5]  [,6]   [,7]
## Lm3rC.l1  0.07  1.00  0.00  0.62  0.02  1.00   1.00
## Lyr.l1   -0.03 -1.02  0.02  1.00  0.30 -0.57   0.26
## Dpy.l1    1.00 -3.45  0.02  0.53 -0.04 -0.05   1.08
## Rm.l1    -0.29 -8.51  1.00  7.06 -2.47  2.69  20.68
## Rb.l1     0.57  8.00 -0.62 14.91  1.00  5.84 -14.88
## Ds831     0.00 -0.24 -0.01  0.00  0.02  0.36   0.16
## trend.l1  0.00  0.00  0.00  0.00  0.00 -0.01  -0.01

Normalized weights \(\widehat{\alpha}_i\) (see Table 7.1 of Juselius (2006))

W.01 <- ca.jo.res.01$S0K %*% V.01 %*% solve(t(V.01) %*% ca.jo.res.01$SKK %*% V.01)

round(W.01, 2)
##       [,1]  [,2]  [,3]  [,4]  [,5] [,6] [,7]
## [1,] -1.05 -0.15  1.18 -0.05 -0.15    0    0
## [2,] -0.06  0.05 -1.54 -0.05 -0.05    0    0
## [3,] -0.71  0.04 -0.30  0.01  0.07    0    0
## [4,]  0.02  0.00 -0.10  0.00  0.01    0    0
## [5,]  0.02  0.00  0.16  0.00  0.01    0    0

Combined effects: \(\widehat{\Pi}\) (see Table 7.1 of Juselius (2006))

round(ca.jo.res.01$PI, 2)
##         Lm3rC.l1 Lyr.l1 Dpy.l1 Rm.l1 Rb.l1 Ds831 trend.l1
## Lm3rC.d    -0.26   0.13  -0.51  2.86 -3.39  0.03        0
## Lyr.d       0.02  -0.15  -0.28 -2.13  0.59  0.00        0
## Dpy.d       0.00   0.01  -0.84 -0.52  0.27  0.00        0
## Rm.d        0.00   0.00   0.02 -0.11  0.05  0.00        0
## Rb.d        0.00   0.00   0.01  0.08 -0.10  0.00        0

References

Juselius, Katarina. 2006. The Cointegrated VAR Model: Methodology and Applications. Oxford University Press.
Pfaff, Bernhard. 2008. Analysis of Integrated and Cointegrated Time Series with r. Springer Science & Business Media.