5 Testing Restrictions on \(\beta\)
This chapter contains the replication of the material of Chapter 10 of Juselius (2006).
5.1 Formulating hypotheses as restrictions on \(\beta\)
1) Long-run money demand relationship:
1.1) Formulated in terms of free parameters
\[\begin{align*} {\bf \beta}_1 &= {\bf \text{H}}_1 {\bf \varphi}_1 \\ &= \begin{bmatrix} \phantom{-}1 & \phantom{-}0 & \phantom{-}0 \\ -1 & \phantom{-}0 & \phantom{-}0 \\ \phantom{-}0 & \phantom{-}0 & \phantom{-}0 \\ \phantom{-}0 & \phantom{-}1 & \phantom{-}0 \\ \phantom{-}0 & -1 & \phantom{-}0 \\ \phantom{-}0 & \phantom{-}0 & \phantom{-}1 \end{bmatrix} \begin{bmatrix} \varphi_{11} \\ \varphi_{12} \\ \varphi_{13} \end{bmatrix} \end{align*}\]
<- matrix(c( 1 , 0, 0,
H1 -1, 0, 0,
0 , 0, 0,
0, 1, 0,
0, -1, 0,
0, 0, 1), c(6, 3), byrow = TRUE)
H1
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] -1 0 0
## [3,] 0 0 0
## [4,] 0 1 0
## [5,] 0 -1 0
## [6,] 0 0 1
1.2) Formulated in terms of restricted parameters
\[\begin{align*} {\bf \text{R}}_1^{'} {\bf \beta}_1 &= {\bf 0} \\ \begin{bmatrix} \phantom{-}1 & \phantom{-}1 & \phantom{-}0 & \phantom{-}0 & \phantom{-}0 & \phantom{-}0 \\ \phantom{-}0 & \phantom{-}0 & \phantom{-}1 & \phantom{-}0 & \phantom{-}0 & \phantom{-}0 \\ \phantom{-}0 & \phantom{-}0 & \phantom{-}0 & \phantom{-}1 & \phantom{-}1 & \phantom{-}0 \end{bmatrix} \begin{bmatrix} \beta_{11} \\ \beta_{12} \\ \beta_{13} \\ \beta_{14} \\ \beta_{15} \\ \beta_{16} \end{bmatrix} &= \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \end{align*}\]
<- t(matrix(c( 1, 1, 0, 0, 0, 0,
R1 0, 0, 1, 0, 0, 0,
0, 0, 0, 1, 1, 0), c(3, 6), byrow = TRUE))
t(R1)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 1 0 0 0 0
## [2,] 0 0 1 0 0 0
## [3,] 0 0 0 1 1 0
1.3) Relationship between specification in terms of free and restricted parameters
- \({\bf \text{R}}_i = {\bf \text{H}}_{\perp,i}\), i.e., \({\bf \text{R}}_i^{'} {\bf \text{H}}_{i} = {\bf 0}\)
t(R1) %*% H1
## [,1] [,2] [,3]
## [1,] 0 0 0
## [2,] 0 0 0
## [3,] 0 0 0
- \({\bf \text{H}}_i\) lies in the left nullspace of \({\bf \text{R}}_i\), i.e., \({\bf \text{H}}_i = {\bf N} \left( {\bf \text{R}}_i^{'} \right)\)
<- MASS::Null(R1)
H1x H1x
## [,1] [,2] [,3]
## [1,] -0.5 -0.5 0
## [2,] 0.5 0.5 0
## [3,] 0.0 0.0 0
## [4,] 0.5 -0.5 0
## [5,] -0.5 0.5 0
## [6,] 0.0 0.0 1
H1
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] -1 0 0
## [3,] 0 0 0
## [4,] 0 1 0
## [5,] 0 -1 0
## [6,] 0 0 1
Note, the condition above identifies only the space on which \({\bf \text{H}}_i\) lies. The particular
round(cbind(H1x[,1,drop=FALSE] + H1x[,2,drop=FALSE], H1x[,1,drop=FALSE] - H1x[,2,drop=FALSE], H1x[,3,drop=FALSE]), 3)
## [,1] [,2] [,3]
## [1,] -1 0 0
## [2,] 1 0 0
## [3,] 0 0 0
## [4,] 0 1 0
## [5,] 0 -1 0
## [6,] 0 0 1
H1
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] -1 0 0
## [3,] 0 0 0
## [4,] 0 1 0
## [5,] 0 -1 0
## [6,] 0 0 1
2) Long-run aggregate demand relationship:
2.1) Formulated in terms of free parameters
\[\begin{align*} {\bf \beta}_2 &= {\bf \text{H}}_2 {\bf \varphi}_2 \\ &= \begin{bmatrix} \phantom{-}0 & \phantom{-}0 \\ \phantom{-}1 & \phantom{-}0 \\ \phantom{-}0 & \phantom{-}1 \\ \phantom{-}0 & \phantom{-}0 \\ \phantom{-}0 & -1 \\ \phantom{-}0 & \phantom{-}0 \end{bmatrix} \begin{bmatrix} \varphi_{21} \\ \varphi_{22} \end{bmatrix} \end{align*}\]
<- matrix(c( 0, 0,
H2 1, 0,
0 , 1,
0, 0,
0, -1,
0, 0), c(6, 2), byrow = TRUE)
H2
## [,1] [,2]
## [1,] 0 0
## [2,] 1 0
## [3,] 0 1
## [4,] 0 0
## [5,] 0 -1
## [6,] 0 0
2.2) Formulated in terms of restricted parameters
\[\begin{align*} {\bf \text{R}}_2^{'} {\bf \beta}_2 &= {\bf 0} \\ \begin{bmatrix} \phantom{-}1 & \phantom{-}0 & \phantom{-}0 & \phantom{-}0 & \phantom{-}0 & \phantom{-}0 \\ \phantom{-}0 & \phantom{-}0 & \phantom{-}1 & \phantom{-}0 & \phantom{-}1 & \phantom{-}0 \\ \phantom{-}0 & \phantom{-}0 & \phantom{-}0 & \phantom{-}1 & \phantom{-}0 & \phantom{-}0 \\ \phantom{-}0 & \phantom{-}0 & \phantom{-}0 & \phantom{-}0 & \phantom{-}0 & \phantom{-}1 \end{bmatrix} \begin{bmatrix} \beta_{21} \\ \beta_{22} \\ \beta_{23} \\ \beta_{24} \\ \beta_{25} \\ \beta_{26} \end{bmatrix} &= \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \end{align*}\]
<- t(matrix(c( 1, 0, 0, 0, 0, 0,
R2 0, 0, 1, 0, 1, 0,
0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 1), c(4, 6), byrow = TRUE))
t(R2)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 0 0 0 0 0
## [2,] 0 0 1 0 1 0
## [3,] 0 0 0 1 0 0
## [4,] 0 0 0 0 0 1
2.3) Relationship between specification in terms of free and restricted parameters
- \({\bf \text{R}}_i = {\bf \text{H}}_{\perp,i}\), i.e., \({\bf \text{R}}_i^{'} {\bf \text{H}}_{i} = {\bf 0}\)
t(R2) %*% H2
## [,1] [,2]
## [1,] 0 0
## [2,] 0 0
## [3,] 0 0
## [4,] 0 0
- \({\bf \text{H}}_i\) lies in the left nullspace of \({\bf \text{R}}_i\), i.e., \({\bf \text{H}}_i = {\bf N} \left( {\bf \text{R}}_i^{'} \right)\)
<- MASS::Null(R2)
H2x H2x
## [,1] [,2]
## [1,] 0.0000000 0.0000000
## [2,] -0.7071068 -0.7071068
## [3,] -0.5000000 0.5000000
## [4,] 0.0000000 0.0000000
## [5,] 0.5000000 -0.5000000
## [6,] 0.0000000 0.0000000
H2
## [,1] [,2]
## [1,] 0 0
## [2,] 1 0
## [3,] 0 1
## [4,] 0 0
## [5,] 0 -1
## [6,] 0 0
Note, the condition above identifies only the space on which \({\bf \text{H}}_i\) lies. The particular
round(cbind((H2x[,1,drop=FALSE] + H2x[,2,drop=FALSE]) / (H2x[2,1] + H2x[2,2]), (H2x[,2,drop=FALSE] - H2x[,1,drop=FALSE])), 3)
## [,1] [,2]
## [1,] 0 0
## [2,] 1 0
## [3,] 0 1
## [4,] 0 0
## [5,] 0 -1
## [6,] 0 0
H2
## [,1] [,2]
## [1,] 0 0
## [2,] 1 0
## [3,] 0 1
## [4,] 0 0
## [5,] 0 -1
## [6,] 0 0
3) Long-run term structure relationship:
3.1) Formulated in terms of free parameters
\[\begin{align*} {\bf \beta}_3 &= {\bf \text{H}}_3 {\bf \varphi}_3 \\ &= \begin{bmatrix} \phantom{-}0 & \phantom{-}0 \\ \phantom{-}0 & \phantom{-}0 \\ \phantom{-}0 & \phantom{-}0 \\ \phantom{-}1 & \phantom{-}0 \\ -1 & -1 \\ \phantom{-}0 & \phantom{-}1 \end{bmatrix} \begin{bmatrix} \varphi_{31} \\ \varphi_{32} \end{bmatrix} \end{align*}\]
<- matrix(c( 0, 0,
H3 0, 0,
0 , 0,
1, 0,
-1, 0,
0, 1), c(6, 2), byrow = TRUE)
H3
## [,1] [,2]
## [1,] 0 0
## [2,] 0 0
## [3,] 0 0
## [4,] 1 0
## [5,] -1 0
## [6,] 0 1
3.2) Formulated in terms of restricted parameters
\[\begin{align*} {\bf \text{R}}_2^{'} {\bf \beta}_2 &= {\bf 0} \\ \begin{bmatrix} \phantom{-}1 & \phantom{-}0 & \phantom{-}0 & \phantom{-}0 & \phantom{-}0 & \phantom{-}0 \\ \phantom{-}0 & \phantom{-}1 & \phantom{-}0 & \phantom{-}0 & \phantom{-}0 & \phantom{-}0 \\ \phantom{-}0 & \phantom{-}0 & \phantom{-}1 & \phantom{-}0 & \phantom{-}0 & \phantom{-}0 \\ \phantom{-}0 & \phantom{-}0 & \phantom{-}0 & \phantom{-}1 & \phantom{-}1 & \phantom{-}0 \end{bmatrix} \begin{bmatrix} \beta_{21} \\ \beta_{22} \\ \beta_{23} \\ \beta_{24} \\ \beta_{25} \\ \beta_{26} \end{bmatrix} &= \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \end{align*}\]
<- t(matrix(c( 1, 0, 0, 0, 0, 0,
R3 0, 1, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0,
0, 0, 0, 1, 1, 0), c(4, 6), byrow = TRUE))
t(R3)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 0 0 0 0 0
## [2,] 0 1 0 0 0 0
## [3,] 0 0 1 0 0 0
## [4,] 0 0 0 1 1 0
3.3) Relationship between specification in terms of free and restricted parameters
- \({\bf \text{R}}_i = {\bf \text{H}}_{\perp,i}\), i.e., \({\bf \text{R}}_i^{'} {\bf \text{H}}_{i} = {\bf 0}\)
t(R3) %*% H3
## [,1] [,2]
## [1,] 0 0
## [2,] 0 0
## [3,] 0 0
## [4,] 0 0
- \({\bf \text{H}}_i\) lies in the left nullspace of \({\bf \text{R}}_i\), i.e., \({\bf \text{H}}_i = {\bf N} \left( {\bf \text{R}}_i^{'} \right)\)
<- MASS::Null(R3)
H3x H3x
## [,1] [,2]
## [1,] 0.0000000 0
## [2,] 0.0000000 0
## [3,] 0.0000000 0
## [4,] -0.7071068 0
## [5,] 0.7071068 0
## [6,] 0.0000000 1
H3
## [,1] [,2]
## [1,] 0 0
## [2,] 0 0
## [3,] 0 0
## [4,] 1 0
## [5,] -1 0
## [6,] 0 1
Note, the condition above identifies only the space on which \({\bf \text{H}}_i\) lies. The particular
round(cbind(H3x[,1,drop=FALSE] / H3x[4,1], H3x[,2,drop=FALSE]), 3)
## [,1] [,2]
## [1,] 0 0
## [2,] 0 0
## [3,] 0 0
## [4,] 1 0
## [5,] -1 0
## [6,] 0 1
H3
## [,1] [,2]
## [1,] 0 0
## [2,] 0 0
## [3,] 0 0
## [4,] 1 0
## [5,] -1 0
## [6,] 0 1
5.2 Same restrictions on all \(\beta\)
Load the function ca_jo_jus06_hr3_fun()
from GitHub.
source("https://raw.githubusercontent.com/mmoessler/juselius-2006/main/R/blrtest_fun.R")
Note, the function blrtest_fun()
is based on the function blrtest()
from the library urca
(see also Pfaff (2008)) and edited such that it is compatible with the results from the function ca_jo_jus06_fun
.
5.2.1 \(\mathcal{H}_1\)
\(\mathcal{H}_1\): \(\beta_{trend}=0\)
.01$P <- 6
ca.jo.res<- ca.jo.res.01
z <- 3
r
# exclusion of trend in cir
<- matrix(c(1,0,0,0,0,0,
H1 0,1,0,0,0,0,
0,0,1,0,0,0,
0,0,0,1,0,0,
0,0,0,0,1,0,
0,0,0,0,0,1,
0,0,0,0,0,0), nrow=7, ncol=6, byrow=T)
<- blrtest_fun(z = z, H = H1, r = r)
b.h01.res
# test results
$teststat b.h01.res
## [1] 0.9233936
$pval b.h01.res
## [1] 0.819779 3.000000
# restricted cointegrating vectors
round(b.h01.res$V[,1]/b.h01.res$V[3,1], 2)
## [1] 0.07 -0.03 1.00 -0.29 0.59 0.00 0.00
round(b.h01.res$V[,2]/b.h01.res$V[1,2], 2)
## [1] 1.00 -1.22 -3.71 -10.39 8.82 -0.25 0.00
round(b.h01.res$V[,3]/b.h01.res$V[4,3], 2)
## [1] 0.00 0.02 0.01 1.00 -0.64 -0.01 0.00
5.2.2 \(\mathcal{H}_2\)
\(\mathcal{H}_2\): \(\beta_{D_S831}=0\)
.01$P <- 6
ca.jo.res<- ca.jo.res.01
z <- 3
r
# exclusion of shift in cir
<- matrix(c(1,0,0,0,0,0,
H2 0,1,0,0,0,0,
0,0,1,0,0,0,
0,0,0,1,0,0,
0,0,0,0,1,0,
0,0,0,0,0,0,
0,0,0,0,0,1), nrow=7, ncol=6, byrow=T)
<- blrtest_fun(z = z, H = H2, r = r)
b.h02.res
# test results
$teststat b.h02.res
## [1] 19.08055
$pval b.h02.res
## [1] 0.0002631122 3.0000000000
# restricted cointegrating vectors
round(b.h02.res$V[,1]/b.h02.res$V[3,1], 2)
## [1] 0.06 -0.03 1.00 -0.32 0.56 0.00 0.00
round(b.h02.res$V[,2]/b.h02.res$V[1,2], 2)
## [1] 1.00 -1.72 -3.41 -42.17 28.60 0.00 0.00
round(b.h02.res$V[,3]/b.h02.res$V[4,3], 2)
## [1] 0.08 0.14 0.09 1.00 2.11 0.00 0.00
5.2.3 \(\mathcal{H}_3\)
\(\mathcal{H}_3\): \(\beta_{m^{r}}=-\beta_{y^{r}}\)
.01$P <- 6
ca.jo.res<- ca.jo.res.01
z <- 3
r
# exclusion of shift in cir
<- matrix(c( 1,0,0,0,0,0,
H3 -1,0,0,0,0,0,
0,1,0,0,0,0,
0,0,1,0,0,0,
0,0,0,1,0,0,
0,0,0,0,1,0,
0,0,0,0,0,1), nrow=7, ncol=6, byrow=T)
H3
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 0 0 0 0 0
## [2,] -1 0 0 0 0 0
## [3,] 0 1 0 0 0 0
## [4,] 0 0 1 0 0 0
## [5,] 0 0 0 1 0 0
## [6,] 0 0 0 0 1 0
## [7,] 0 0 0 0 0 1
<- blrtest_fun(z = z, H = H3, r = r)
b.h03.res
$teststat b.h03.res
## [1] 3.364939
$pval b.h03.res
## [1] 0.3387061 3.0000000
$V b.h03.res
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.00000000 1.0000000000 1.000000e+00 1.00000000 1.000000000
## [2,] -1.00000000 -1.0000000000 -1.000000e+00 -1.00000000 -1.000000000
## [3,] 16.50417371 -3.4601214048 -3.557886e+00 1.75219052 1.127624813
## [4,] -9.43854258 -8.0670685093 -1.082881e+02 39.89698866 35.199973941
## [5,] 9.71465325 7.8188372616 8.229685e+01 17.88461844 -39.097781341
## [6,] -0.01695032 -0.2459345769 6.593580e-01 -0.19343299 0.151984555
## [7,] 0.00212673 -0.0007979788 -3.345322e-03 0.01264414 -0.004088109
## [,6]
## [1,] 1.000000000
## [2,] -1.000000000
## [3,] -0.638387946
## [4,] -6.596251960
## [5,] 16.547016757
## [6,] 0.458790040
## [7,] -0.008307031
round(b.h03.res$V[,1]/b.h03.res$V[3,1], 3)
## [1] 0.061 -0.061 1.000 -0.572 0.589 -0.001 0.000
round(b.h03.res$V[,2]/b.h03.res$V[1,2], 3)
## [1] 1.000 -1.000 -3.460 -8.067 7.819 -0.246 -0.001
round(b.h03.res$V[,3]/b.h03.res$V[4,3], 3)
## [1] -0.009 0.009 0.033 1.000 -0.760 -0.006 0.000
5.2.4 \(\mathcal{H}_4\)
\(\mathcal{H}_4\): \(\beta_{R_{m}}=-\beta_{R_{b}}\)
.01$P <- 6
ca.jo.res<- ca.jo.res.01
z <- 3
r
# exclusion of shift in cir
<- matrix(c( 1,0,0, 0,0,0,
H4 0,1,0, 0,0,0,
0,0,1, 0,0,0,
0,0,0, 1,0,0,
0,0,0,-1,0,0,
0,0,0, 0,1,0,
0,0,0, 0,0,1), nrow=7, ncol=6, byrow=T)
H4
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 0 0 0 0 0
## [2,] 0 1 0 0 0 0
## [3,] 0 0 1 0 0 0
## [4,] 0 0 0 1 0 0
## [5,] 0 0 0 -1 0 0
## [6,] 0 0 0 0 1 0
## [7,] 0 0 0 0 0 1
<- blrtest_fun(z = z, H = H4, r = r)
b.h04.res
$teststat b.h04.res
## [1] 4.903692
$pval b.h04.res
## [1] 0.1789867 3.0000000
$V b.h04.res
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.000000e+00 1.0000000000 1.000000000 1.00000000 1.000000000
## [2,] -7.433982e-01 -0.9970751757 -1.008996255 6.72003608 -0.906214286
## [3,] 1.590373e+01 -3.4500717550 -2.030723284 0.10736226 -0.487137651
## [4,] -1.024963e+01 -7.6066125054 -60.313807582 -32.72588057 -2.889621902
## [5,] 1.024963e+01 7.6066125054 60.313807582 32.72588057 2.889621902
## [6,] -7.229269e-03 -0.2484915620 0.385226931 0.26368433 0.451542662
## [7,] 9.109952e-04 -0.0007686502 0.001221223 -0.03337794 -0.009797564
## [,6]
## [1,] 1.000000000
## [2,] 2.025171972
## [3,] 3.480962389
## [4,] 58.668047047
## [5,] -58.668047047
## [6,] -0.245900308
## [7,] -0.006510077
round(b.h04.res$V[,1]/b.h04.res$V[3,1], 3)
## [1] 0.063 -0.047 1.000 -0.644 0.644 0.000 0.000
round(b.h04.res$V[,2]/b.h04.res$V[1,2], 3)
## [1] 1.000 -0.997 -3.450 -7.607 7.607 -0.248 -0.001
round(b.h04.res$V[,3]/b.h04.res$V[4,3], 3)
## [1] -0.017 0.017 0.034 1.000 -1.000 -0.006 0.000
5.2.5 \(\mathcal{H}_5\)
\(\mathcal{H}_5\): \(\beta_{m^{r}}=-\beta_{y^{r}}\) and \(\beta_{trend}=0\)
.01$P <- 6
ca.jo.res<- ca.jo.res.01
z <- 3
r
# exclusion of shift in cir
<- matrix(c( 1,0,0, 0,0,
H5 -1,0,0, 0,0,
0,1,0, 0,0,
0,0,1, 0,0,
0,0,0, 1,0,
0,0,0, 0,1,
0,0,0, 0,0), nrow=7, ncol=5, byrow=T)
H5
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 0 0 0
## [2,] -1 0 0 0 0
## [3,] 0 1 0 0 0
## [4,] 0 0 1 0 0
## [5,] 0 0 0 1 0
## [6,] 0 0 0 0 1
## [7,] 0 0 0 0 0
<- blrtest_fun(z = z, H = H5, r = r)
b.h05.res
$teststat b.h05.res
## [1] 9.360627
$pval b.h05.res
## [1] 0.1542893 6.0000000
$V b.h05.res
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.000000000 1.0000000 1.0000000 1.0000000 1.0000000
## [2,] -1.000000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000
## [3,] 11.889873745 -4.5623725 -5.0812664 1.7878800 2.9687509
## [4,] -15.432956845 -1.8076511 -71.3860686 18.9798079 88.1327580
## [5,] 10.778425924 5.2091465 62.0106339 8.5201907 -115.4979626
## [6,] -0.007434647 -0.3148795 0.3171851 0.2002191 -0.2237345
## [7,] 0.000000000 0.0000000 0.0000000 0.0000000 0.0000000
round(b.h05.res$V[,1]/b.h05.res$V[3,1], 3)
## [1] 0.084 -0.084 1.000 -1.298 0.907 -0.001 0.000
round(b.h05.res$V[,2]/b.h05.res$V[1,2], 3)
## [1] 1.000 -1.000 -4.562 -1.808 5.209 -0.315 0.000
round(b.h05.res$V[,3]/b.h05.res$V[4,3], 3)
## [1] -0.014 0.014 0.071 1.000 -0.869 -0.004 0.000
5.2.6 \(\mathcal{H}_6\)
\(\mathcal{H}_6\): \(\beta_{m^{r}}=-\beta_{y^{r}}\), \(\beta_{R_{m}}=-\beta_{R_{b}}\) and \(\beta_{trend}=0\)
.01$P <- 6
ca.jo.res<- ca.jo.res.01
z <- 3
r
<- matrix(c( 1,0, 0, 0,
H6 -1,0, 0, 0,
0,1, 0, 0,
0,0, 1, 0,
0,0,-1, 0,
0,0, 0, 1,
0,0, 0, 0), nrow=7, ncol=4, byrow=T)
H6
## [,1] [,2] [,3] [,4]
## [1,] 1 0 0 0
## [2,] -1 0 0 0
## [3,] 0 1 0 0
## [4,] 0 0 1 0
## [5,] 0 0 -1 0
## [6,] 0 0 0 1
## [7,] 0 0 0 0
<- blrtest_fun(z = z, H = H6, r = r)
b.h06.res
$teststat b.h06.res
## [1] 16.51752
$pval b.h06.res
## [1] 0.05683002 9.00000000
$V b.h06.res
## [,1] [,2] [,3] [,4]
## [1,] 1.0000000 1.0000000 1.000000 1.00000000
## [2,] -1.0000000 -1.0000000 -1.000000 -1.00000000
## [3,] 8.4404556 -7.2716468 1.780715 2.06799810
## [4,] -7.5031367 -11.3584231 -64.755312 55.57540805
## [5,] 7.5031367 11.3584231 64.755312 -55.57540805
## [6,] -0.0664285 -0.3227279 0.602895 -0.02917173
## [7,] 0.0000000 0.0000000 0.000000 0.00000000
round(b.h06.res$V[,1]/b.h06.res$V[3,1], 3)
## [1] 0.118 -0.118 1.000 -0.889 0.889 -0.008 0.000
round(b.h06.res$V[,2]/b.h06.res$V[1,2], 3)
## [1] 1.000 -1.000 -7.272 -11.358 11.358 -0.323 0.000
round(b.h06.res$V[,3]/b.h06.res$V[4,3], 3)
## [1] -0.015 0.015 -0.027 1.000 -1.000 -0.009 0.000