Loading [MathJax]/jax/output/SVG/jax.js

11  w0 scale setting

The fit antsaz: (w0a)lat=wiso0a[1+P[5](ξξiso)] with ξ=M2π(4πfπ)2, and the chiral LO from (, eq (4.8)).

χ2/dof= 3.61635

par a_from_w0 a_from_fpi
a(A) 0.094475(93) 0.09025(79)
a(B) 0.080892(26) 0.07948(11)
a(C) 0.068757(38) 0.06819(14)
a(D) 0.057125(34) 0.056850(90)
a(E) 0.049148(38) 0.04892(11)
P[5] 0.574(24) 0
0.0050.010.0150.020.0250.030.03522.533.5
ABCDE$\xi$$w_0/a$
<r >
00.0020.0040.0060.008−0.005−0.004−0.003−0.002−0.0010
fpi-w0no C48$a^2$$a(f_\pi)-a(w_0)$

<r >

11.1 mu corrections

χ2/dof= 1.58581

par a_from_w0 a_from_fpi
a(A) 0.09420(12) 0.09022(64)
a(B) 0.08117(10) 0.079614(53)
a(C) 0.06890(10) 0.068143(67)
a(D) 0.05751(13) 0.056936(78)
a(E) 0.049078(61) 0.048930(64)
P[5] 0.663(31) 0
0.0050.010.0150.020.0250.030.03522.533.5
ABCDE$\xi$$w_0/a$
<r >
00.0020.0040.0060.008−0.004−0.003−0.002−0.0010
fpi-w0no C48$a^2$$a(f_\pi)-a(w_0)$

<r >

12 comparing w0 before and after corrections

0.0050.010.0150.020.0250.030.03522.533.5
ABCDEA-rewB-rewC-rewD-rewE-rew$\xi$$w_0/a$

<r >

12.1 w0 usign a from fpi

P[0] represent w0 at the physical point. BMW value shoul be 0.17236

χ2/dof= 3.10512

P value
P[0] 0.1696(20)
P[1] 0.659(35)
P[2] 8.0(6.4)
P[3] -1371(720)
0.0050.010.0150.020.0250.030.03522.533.5
ABCDE$\xi$$w_0/a$

<r >