Processing math: 100%

3  B64

3.1 w0

$ \mbox{sim}$$ \mbox{sim+loop l}$$ \mbox{sim+loop s}$$ \mbox{sim+rew s}$$\mbox{sim+loop c}$$\mbox{sim+rew c}$2.122.132.142.152.162.172.18
$ \mbox{sim}$$ \mbox{sim+loop l}$$ \mbox{sim+loop s}$$ \mbox{sim+rew s}$$\mbox{sim+loop c}$$\mbox{sim+rew c}$$w_0/a$

<r >

w0 = 2.1268(16) χ2/dof= 0

w0+mul_correction = 2.1263(15) χ2/dof= 0

w0+mus_correction = 2.1357(20) χ2/dof= 0

w0+muc_correction = 2.171(14) χ2/dof= 0

w0_rewcOS = 2.130(10) χ2/dof= 0

w0_rewsOS = 2.1309(10) χ2/dof= 0

01234500.050.10.150.20.250.30.35
\verb|W(t)|\verb|W+mul_correction(t)|\verb|W+mus_correction(t)|\verb|W+muc_correction(t)|\verb|W_rewcOS(t)|\verb|W_rewsOS(t)|$t/a^2$$W(t)$

<r >

3.2 w0 derivative

012345−8−6−4−20
\verb|der_W_mul_correction(t)|\verb|der_W_mus_correction(t)|\verb|der_W_muc_correction(t)|$t/a^2$$\partial_\mu W(t)$

<r >

3.3 histogram

histogram of the jackknifes at time t/a2=3

y err label
150 0.1969348 0.00025805 W(t)
399 0.1969348 0.00025805 W(t)
648 0.1969348 0.00025805 W(t)
1501 -1.3035032 0.64794735 der_W_mul_correction(t)
897 -3.3810430 0.87208866 der_W_mus_correction(t)
1644 -2.3710659 0.72313210 der_W_muc_correction(t)

3.4 autocorrelation

binnins analysis fo w0

0204060801001201402.12452.1252.12552.1262.12652.1272.12752.1282.12852.129
not integer binningbin-sizew0

<r >

0204060801001201402.1252.1262.1272.1282.129
not integer binningbin-sizew0+mul_correction

<r >

0204060801001201402.1142.1152.1162.1172.1182.1192.122.1212.122
not integer binningbin-sizew0+mus_correction

<r >

0204060801001201402.0752.082.0852.092.0952.1
not integer binningbin-sizew0+muc_correction

<r >

3.5 reweightig source noise

w0_rewcOS = 2.130(10) χ2/dof= 0

01234500.050.10.150.20.250.30.35
\verb|W_rewcOS(t)_100sources|\verb|W_rewcOS(t)_50sources|\verb|W_rewcOS(t)_25sources|$t/a^2$$W(t)$
<r >
01234500.00050.0010.00150.0020.00250.0030.00350.0040.0045
\verb|W_rewcOS(t)_100sources|\verb|W_rewcOS(t)_50sources|\verb|W_rewcOS(t)_25sources|$t/a^2$$\mbox{Error}[W(t)]$

<r >