Chapter 2 The carrier optimisation problem

2.1 Introduction

We introduce our mixed-integer nonlinear optimization problem , which represents the starting point of this analysis, as it allow us to compute the business as usual emissions levels. We start by presenting the game in the absence of coalition formation. This will be useful as a baseline.

2.2 Model variables and parameter

For ease of reference, relevant notation is summarized in the following table:

Model Parameters definition
Nfirms Number of Firms in the Simulation Framework
T=2018,..,2042 Planing Horizon
i[1,Nfirms] Firm Index
t[1,T] Period Index
d Cycle Distance in Nautical Miles
YABt Annual Market Demand in TEU in Period t
si Firm i ’s Market Share
XABi,t Firm i ’s Annual Demand in TEU in Period t
ϕi Firm i ’s Fleet’s Main Engine Energy Efficiency
ηfuelt The Chosen Fuel’s Price in Period t in ($/ton)
Tport Average Port Time During the Cycle (including Pilotage, Mooring, Time buffers, etc.) in (hours)
COi Annual Non-Fuel Fixed Operating Cost Per Vessel in ($/vessel)
τ Average Annual Working Time Per Vessel in (hours)
ki Vessel Capacity in TEU Per Firm
r Discount Rate
Ni,t Number of ships deployed in the service to satisfy the firm’s demand at the chosen speed level
Vi,t Average sailing speed in nautical miles nm per hour [knots]

2.3 Containership Simulated Market Transport Demand for the European-Asian Route

\begin{equation} Y_t^{Europe-Asia} = (\frac{GDP_t}{GDP_0})^v \times (\frac{\rho_t}{\rho_0})^η \times Y_0^{AB} \end{equation}

Containerized Trade for the Europe–Far East service (Million TEU) are adapted from UNCTAD (2021) from 2018 till 2021. Assuming \frac{\rho_t}{\rho_0} = 1 :

\begin{equation} Y_t^{Europe-Asia} = \biggl(\frac{GDP_t}{GDP_{2021}}\biggr)^{0.8} ~\ Y_{2021}^{Europe-Asia} ~\ ~\ ~\ \forall t \geq 2021 \end{equation}

202020252030203520407M8M9M10M11M12M13M14M100120140160180200
Containership transport work in TEUGDPContainership Simulated Market Transport Demand for the European-Asian RouteperiodContainership transport work in TEUGDP

2.4 The carrier’s optimisation problem

\begin{equation} \begin{aligned} \max_{{ N_{i,t} ,V_{i,t} }} \pi_{i} = {} \sum_{t=1}^{T} {(1+r)^{-t}} \bigg[ ~\ \rho_t ~\ X^{AB}_{i,t} - \bigg( \eta_t^{fuel} ~\ \frac{X^{AB}_{i,t}} {k_i} ~\ d ~\ \phi_i ~\ (V_{i,t})^2 \bigg) - \bigg( \eta_t^{MGO} ~\ \frac{X^{AB}_{i,t}} {k_i} ~\ d ~\ F_A ~\ \frac{1}{V_{i,t}} \bigg) - \bigg( CO_{i,t} ~\ N_{i,t} \bigg) \bigg] \forall i =1,.., N^{ firms} \end{aligned} \end{equation}

subject to: \begin{equation} \mbox{Firm Level Demand}: X_{i,t}^{AB}= s_{i} Y_t^{AB} = s_{i} \times (\frac{GDP_t}{GDP_0})^v \times (\frac{\rho_t}{\rho_0})^η \times Y_0^{AB} \end{equation}
\begin{equation} \mbox{Firm Level Supply and Operational Constraints}: \begin{cases} V_i^{min} \leq V_{i,t} \leq V_i^{max} \\ \\ N_{i,t} \in Z^+ \\ N_{i,t} \geq N_{{min}_{i,t}}^{vessel} = \frac{X^{AB}_{t,i} \times \bigg( \frac{d }{V_{i,t}} +t_{port} \bigg)} {k_i \times \tau } \\ \end{cases} \end{equation}

\begin{equation} \mbox{Energy Efficiency and Fuel Consumption} \begin{cases} \phi_i = SFOC_0^M \times EL^M \times PS^M \times 10^{-6} \times (\frac{1}{V_i^{s}})^3 \\ F_A = SFOC^A \times EL^A \times PS^A \times 10^{-6}\\ \end{cases} \end{equation}

2.5 Emissions Model

we set sulfur and carbon BAU emission levels \overline{e^{CO_2}_{i,t}} ,\overline{e^{SO_x}_{i,t}} as follows: \begin{equation} \begin{aligned} \overline{e^{CO_2}_{i,t}} [ tonnes _{(CO_2)} ] & = \epsilon^{CO_2 } \bigg[ \frac{tonnes _{(CO_2)}}{tonnes_{(fuel)}} \bigg] \times F_{i,t} [tonnes_{(fuel)}] \\ & = \epsilon^{CO_2 }_{fuel} \times \bigg( \frac{X^{AB}_{i,t}}{k_i} \times d \times \phi_i \times (V_{i,t}^{BAU})^2 \bigg)+ \epsilon^{CO_2 }_{MGO} \times \bigg( \frac{X^{AB}_{i,t}}{k_i} \times F_A \times \frac{d}{V_{i,t}^{BAU}} \bigg) \\ & = \frac{X^{AB}_{i,t}} {K_i} \times d \bigg( \epsilon^{CO_2 }_{fuel} \times \phi_i \times (V_{i,t}^{BAU})^2 + \epsilon^{CO_2 }_{MGO} \times \frac{F_A}{V_{i,t}^{BAU}} \bigg) \end{aligned} \end{equation}\begin{equation} \begin{aligned} \overline{e^{SO_x}_{i,t}} [ tonnes _{(SO_x)} ] & = \epsilon^{SO_x } \bigg[ \frac{tonnes _{(SO_x )}}{tonnes_{(fuel)}} \bigg] \times F_{i,t} [tonnes_{(fuel)}] \\ & = \epsilon^{SO_x }_{fuel} \times \bigg( \frac{X^{AB}_{i,t}}{k_i} \times d \times \phi_i \times (V_{i,t}^{BAU})^2 \bigg)+ \epsilon^{SO_x }_{MGO} \times \bigg( \frac{X^{AB}_{i,t}}{k_i} \times F_A \times \frac{d}{V_{i,t}^{BAU}} \bigg) \\ & = \frac{X^{AB}_{i,t}} {K_i} \times d \bigg( \epsilon^{SO_x }_{fuel} \times \phi_i \times (V_{i,t}^{BAU})^2 + \epsilon^{SO_x }_{MGO} \times \frac{F_A}{V_{i,t}^{BAU}} \bigg) \end{aligned} \end{equation}

2.6 Simulation Parameters

2.6.1 Firm level characteristics and Service/trade characteristics

Parameters Notation Firm 1 Firm 2 Firm 3
Cycle Distance between Europe and East Asia (nm) ^a d 23,000 23,000 23,000
Average time Port (days) ^a T_{port} 10 10 10
Vessel capacity (TEU) ^b k_i 14,000 8000 6000
Main engine power (kW) ^b PS_i^M 89700 68,500 57,100
Auxiliary engine power (kW) ^b PS_i^A 14,000 12,000 12,900
Design speed (knots) ^b V^s_i 25.0 25.0 25.0
Specific fuel oil consumption (main engine) (g/kWh) ^b SFOC_{0,i}^M 175 133 114
Specific fuel oil consumption (auxiliary engine)(g/kWh) ^b SFOC_{0,i}^A 32 24 26
Average Engine load factor (main engine) $ (%) $ ^b EL^M 0.8 0.8 0.8
Average Engine load factor (auxiliary engine) $(%) $ ^b EL^A 0.5 0.5 0.5
Maximum Vessel speed (knots) ^b V_i^{max} 28.0 28.0 28.0
Minimum Vessel speed(knots) ^b V_i^{min} 12.0 12.0 12.0
Total Annual Cost (million ~\ USD/year) ^b CO_{i} 18.25 13.731 12.22

2.6.2 Energy Efficiency and Fuel Consumption per firm

Parameters Notation Firm 1 Firm 2 Firm 3
Main Engine in ton/hour.knot^3 \phi_i 0.000803712 0.000466458 0.000333281
Auxiliary Engine in ton/hour F_{A_{i}} 0.224 0.144 0.1677

2.6.3 Fuel and Emission Parameters

fuel type HFO (3.55%) ULSFO (0.5%) MGO (0.1%)
Global 20 Ports Average fuel Prices $422.5 / tonne 525.5 $/tonne 597 $/tonne
Carbon Emission Factor 3.114 (g/g of Fuel) 3.206 (g/g of Fuel) 3.206 (g/g of Fuel)
Sulfur Emission Factor 0.07 (g/g of Fuel) 0.01 (g/g of Fuel) 0.002 (g/g of Fuel)