Code
# install.packages('meta')JW Tsai
May 17, 2023
dataset01.csvdataset02.csvdataset03.csvdataset04.csvdataset05.csvdataset06.csvChapter 2: 02-continuous.Rmeta packagemeta package!!! 安裝 meta 套件,需要花一點時間,請先執行這一行! (後面才有辦法執行)
Loading 'meta' package (version 6.5-0).
Type 'help(meta)' for a brief overview.
Readers of 'Meta-Analysis with R (Use R!)' should install
older version of 'meta' package: https://tinyurl.com/dt4y5drs
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.4
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.4.4     ✔ tibble    3.2.1
✔ lubridate 1.9.3     ✔ tidyr     1.3.0
✔ purrr     1.0.2     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
         author  year Ne    Me    Se Nc    Mc    Sc
1         Boner  1988 13 13.54 13.85 13 20.77 21.46
2         Boner  1989 20 15.70 13.10 20 22.70 16.47
3        Chudry  1987 12 21.30 13.10 12 39.70 12.90
4         Comis  1993 12 14.50 12.20 12 31.30 15.10
5  DeBenedictis 1994a 17 14.40 11.10 17 27.40 17.30
6  DeBenedictis 1994b  8 14.80 18.60  8 31.40 20.60
7  DeBenedictis  1995 13 15.70 16.80 13 29.60 18.90
8       Debelic  1986 12 29.83 15.95 12 48.08 15.08
9     Henriksen  1988 12 17.50 13.10 12 47.20 16.47
10        Konig  1987 12 12.00 14.60 12 26.20 12.30
11       Morton  1992 16 15.83 13.43 16 38.36 18.01
12     Novembre 1994f 24 15.42  8.35 24 28.46 13.84
13     Novembre 1994s 19 11.00 12.40 19 26.10 14.90
14        Oseid  1995 20 14.10  9.50 20 28.90 18.00
15      Roberts  1985  9 18.90 17.70  9 38.90 18.90
16         Shaw  1985  8 10.27  7.02  8 34.43 10.96
17       Todaro  1993 13 10.10  8.90 13 23.50  4.00
# 2. Calculate mean difference and its standard error for
#    study 1 (Boner 1988) of dataset data1:
MD <- with(data1[1, ], Me - Mc)
seMD <- with(data1[1, ], sqrt(Se^2 / Ne + Sc^2 / Nc))
# 3. Print mean difference and limits of 95% confidence
#    interval using round function to show only two digits:
round(c(MD, MD + c(-1, 1) * qnorm(1 - (0.05 / 2)) * seMD), 2)[1]  -7.23 -21.11   6.65
[1] -1.0206  0.3074
metacont 的結果兩種寫法是一樣的
Number of observations: o = 26
    MD         95%-CI     z p-value
 -7.23 [-21.11; 6.65] -1.02  0.3074
Number of observations: o = 26
     MD         95%-CI     z p-value
1 -7.23 [-21.11; 6.65] -1.02  0.3074
     md    se_md  ci_lower ci_upper  z_score   p_value
1 -7.23 7.083861 -21.11411 6.654112 -1.02063 0.3074298
              author  Ne    Me    Se Nc    Mc    Sc
1    Blashki(75%150)  13  6.40  5.40 18 11.40  9.60
2     Hormazabal(86)  17 11.00  8.20 16 19.00  8.20
3   Jacobson(75-100)  10 17.50  8.80  6 23.00  8.80
4        Jenkins(75)   7 12.30  9.90  7 20.00 10.50
5     Lecrubier(100)  73 15.70 10.60 73 18.70 10.60
6        Murphy(100)  26  8.50 11.00 28 14.50 11.00
7          Nandi(97)  17 25.50 24.00 10 53.20 11.20
8      Petracca(100)  11  6.20  7.60 10 10.00  7.60
9       Philipp(100) 105 -8.10  3.90 46 -8.50  5.20
10     Rampello(100)  22 13.40  2.30 19 19.70  1.30
11       Reifler(83)  13 12.50  7.60 15 12.50  7.60
12       Rickels(70)  29  1.99  0.77 39  2.54  0.77
13     Robertson(75)  13 11.00  8.20 13 15.00  8.20
14      Rouillon(98)  78 15.80  6.80 71 17.10  7.20
15           Tan(70)  23 -8.50  8.60 23 -8.30  6.00
16 Tetreault(50-100)  11 51.90 18.50 11 74.30 18.50
17      Thompson(75)  11  8.00  8.10 18 10.00  9.70
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  14.00   26.00   31.00   53.06   54.00  151.00 
# 1. Calculate standardised mean difference (SMD) and
#    its standard error (seSMD) for study 1 (Blashki) of
#    dataset data2:
N <- with(data2[1, ], Ne + Nc)
SMD <- with(
  data2[1, ],
  (1 - 3 / (4 * N - 9)) * (Me - Mc) /
    sqrt(((Ne - 1) * Se^2 + (Nc - 1) * Sc^2) / (N - 2))
)
seSMD <- with(
  data2[1, ],
  sqrt(N / (Ne * Nc) + SMD^2 / (2 * (N - 3.94)))
)
# 2. Print standardised mean difference and limits of 95% CI
#    interval using round function to show only two digits:
round(c(SMD, SMD + c(-1, 1) * qnorm(1 - (0.05 / 2)) * seSMD), 2)[1] -0.60 -1.33  0.13
data2 |>
  slice(1) |>
  summarise(
  n = Ne + Nc,
  smd =   (1 - 3 / (4 * N - 9)) * (Me - Mc) /
    sqrt(((Ne - 1) * Se^2 + (Nc - 1) * Sc^2) / (N - 2)),
  se_smd = sqrt(N / (Ne * Nc) + SMD^2 / (2 * (N - 3.94))),
  ci_lower = smd - qnorm(1 - (0.05 / 2)) * se_smd,
  ci_upper = smd + qnorm(1 - (0.05 / 2)) * se_smd,
  z_score = smd/se_smd,
  p_value = 2*pnorm(abs(z_score), lower.tail=FALSE)
  )   n        smd   se_smd  ci_lower  ci_upper   z_score   p_value
1 31 -0.5989891 0.372972 -1.330001 0.1320226 -1.605989 0.1082762
Number of observations: o = 31
     SMD            95%-CI     z p-value
 -0.5990 [-1.3299; 0.1319] -1.61  0.1082
Details:
- Hedges' g (bias corrected standardised mean difference; using exact formulae)
The fixed effect model is
\[\hat \theta_k = \theta + \sigma_k \epsilon_k,\\ \epsilon_k \overset{\mathrm{iid}}{\sim} N(0,1) \]
The fixed effect estimate \(\hat \theta_F\) and its variance can be calculated using the following quantities:
(考慮一開始的 fixed effect model)
Or in SMD,
[1] -15.514
[1] 1.4126
[1] -15.5140   1.4126
                         MD               95%-CI %W(common) %W(random)
Boner 1988          -7.2300 [-21.1141;   6.6541]        2.8        3.1
Boner 1989          -7.0000 [-16.2230;   2.2230]        6.4        6.6
Chudry 1987        -18.4000 [-28.8023;  -7.9977]        5.0        5.3
Comis 1993         -16.8000 [-27.7835;  -5.8165]        4.5        4.8
DeBenedictis 1994a -13.0000 [-22.7710;  -3.2290]        5.7        5.9
DeBenedictis 1994b -16.6000 [-35.8326;   2.6326]        1.5        1.6
DeBenedictis 1995  -13.9000 [-27.6461;  -0.1539]        2.9        3.1
Debelic 1986       -18.2500 [-30.6692;  -5.8308]        3.5        3.8
Henriksen 1988     -29.7000 [-41.6068; -17.7932]        3.8        4.1
Konig 1987         -14.2000 [-25.0013;  -3.3987]        4.7        4.9
Morton 1992        -22.5300 [-33.5382; -11.5218]        4.5        4.8
Novembre 1994f     -13.0400 [-19.5067;  -6.5733]       13.0       12.1
Novembre 1994s     -15.1000 [-23.8163;  -6.3837]        7.1        7.3
Oseid 1995         -14.8000 [-23.7200;  -5.8800]        6.8        7.0
Roberts 1985       -20.0000 [-36.9171;  -3.0829]        1.9        2.1
Shaw 1985          -24.1600 [-33.1791; -15.1409]        6.7        6.9
Todaro 1993        -13.4000 [-18.7042;  -8.0958]       19.3       16.6
Number of studies: k = 17
Number of observations: o = 480
                           MD               95%-CI      z  p-value
Common effect model  -15.5140 [-17.8435; -13.1845] -13.05 < 0.0001
Random effects model -15.6436 [-18.1369; -13.1502] -12.30 < 0.0001
Quantifying heterogeneity:
 tau^2 = 2.4374 [0.0000; 40.8996]; tau = 1.5612 [0.0000; 6.3953]
 I^2 = 8.9% [0.0%; 45.3%]; H = 1.05 [1.00; 1.35]
Test of heterogeneity:
     Q d.f. p-value
 17.57   16  0.3496
Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Jackson method for confidence interval of tau^2 and tau
[1] 0.01992783
[1] 0.7079028
[1] 2.82

[1] -15.51403 -15.64357
[1] -15.51403 -15.64702
# 1. Calculate standardised mean difference,
#    variance and weights
N <- with(data2, Ne + Nc)
SMD <- with(
  data2,
  (1 - 3 / (4 * N - 9)) * (Me - Mc) /
    sqrt(((Ne - 1) * Se^2 + (Nc - 1) * Sc^2) / (N - 2))
)
varSMD <- with(
  data2,
  N / (Ne * Nc) + SMD^2 / (2 * (N - 3.94))
)
weight <- 1 / varSMD
# 2. Calculate the inverse variance estimator
round(weighted.mean(SMD, weight), 4)[1] -0.3915
[1] 0.0049
[1] -0.3918  0.0049
       SMD             95%-CI %W(common) %W(random)
1  -0.5990 [-1.3299;  0.1319]        3.5        5.7
2  -0.9518 [-1.6767; -0.2268]        3.6        5.7
3  -0.5908 [-1.6296;  0.4480]        1.7        4.1
4  -0.7062 [-1.7975;  0.3850]        1.6        3.9
5  -0.2815 [-0.6076;  0.0445]       17.6        8.1
6  -0.5375 [-1.0816;  0.0065]        6.3        6.8
7  -1.3204 [-2.1888; -0.4520]        2.5        4.9
8  -0.4800 [-1.3512;  0.3913]        2.5        4.9
9   0.0918 [-0.2549;  0.4385]       15.6        8.0
10 -3.2433 [-4.2020; -2.2846]        2.0        4.5
11  0.0000 [-0.7427;  0.7427]        3.4        5.6
12 -0.7061 [-1.2020; -0.2103]        7.6        7.1
13 -0.4724 [-1.2536;  0.3088]        3.1        5.4
14 -0.1849 [-0.5071;  0.1372]       18.0        8.2
15 -0.0265 [-0.6045;  0.5515]        5.6        6.6
16 -1.1647 [-2.0819; -0.2476]        2.2        4.7
17 -0.2127 [-0.9651;  0.5397]        3.3        5.6
Number of studies: k = 17
Number of observations: o = 902
                         SMD             95%-CI     z  p-value
Common effect model  -0.3918 [-0.5286; -0.2551] -5.62 < 0.0001
Random effects model -0.5861 [-0.8709; -0.3014] -4.03 < 0.0001
Quantifying heterogeneity:
 tau^2 = 0.2315 [0.1379; 0.9822]; tau = 0.4812 [0.3714; 0.9911]
 I^2 = 72.6% [55.5%; 83.1%]; H = 1.91 [1.50; 2.43]
Test of heterogeneity:
     Q d.f.  p-value
 58.38   16 < 0.0001
Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Jackson method for confidence interval of tau^2 and tau
- Hedges' g (bias corrected standardised mean difference; using exact formulae)
The random effect model is
\[\hat \theta_k = \theta + \mu_k + \sigma_k \epsilon_k,\\ \epsilon_k \overset{\mathrm{iid}}{\sim} N(0,1), \\ u_k \overset{\mathrm{iid}}{\sim} N(0,\tau^2)\]
ANd the random effects estimate and its variance are given by
The following methods to estimate the between-study variance \(\tau^2\) are available in the metagen and other functions of R package meta (argument method.tau):
method.tau="DL") (課本 2014 年當時 default)method.tau="PM")method.tau="REML") (現在 meta 6.2-1 default)method.tau="ML")method.tau="HS")method.tau="SJ")method.tau="HE")method.tau="EB")       SMD             95%-CI %W(random)
1  -0.5990 [-1.3299;  0.1319]        5.7
2  -0.9518 [-1.6767; -0.2268]        5.7
3  -0.5908 [-1.6296;  0.4480]        4.1
4  -0.7062 [-1.7975;  0.3850]        3.9
5  -0.2815 [-0.6076;  0.0445]        8.1
6  -0.5375 [-1.0816;  0.0065]        6.8
7  -1.3204 [-2.1888; -0.4520]        4.9
8  -0.4800 [-1.3512;  0.3913]        4.9
9   0.0918 [-0.2549;  0.4385]        8.0
10 -3.2433 [-4.2020; -2.2846]        4.5
11  0.0000 [-0.7427;  0.7427]        5.6
12 -0.7061 [-1.2020; -0.2103]        7.1
13 -0.4724 [-1.2536;  0.3088]        5.4
14 -0.1849 [-0.5071;  0.1372]        8.2
15 -0.0265 [-0.6045;  0.5515]        6.6
16 -1.1647 [-2.0819; -0.2476]        4.7
17 -0.2127 [-0.9651;  0.5397]        5.6
Number of studies: k = 17
Number of observations: o = 902
                         SMD             95%-CI     t p-value
Random effects model -0.5861 [-0.9514; -0.2209] -3.40  0.0036
Quantifying heterogeneity:
 tau^2 = 0.2315; tau = 0.4812; I^2 = 72.6% [55.5%; 83.1%]; H = 1.91 [1.50; 2.43]
Test of heterogeneity:
     Q d.f.  p-value
 58.38   16 < 0.0001
Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Hartung-Knapp adjustment for random effects model (df = 16)
- Hedges' g (bias corrected standardised mean difference; using exact formulae)
                       95%-CI %W(random)
1  -0.5990 [-1.3299;  0.1319]        5.7
2  -0.9518 [-1.6767; -0.2268]        5.7
3  -0.5908 [-1.6296;  0.4480]        4.1
4  -0.7062 [-1.7975;  0.3850]        3.9
5  -0.2815 [-0.6076;  0.0445]        8.1
6  -0.5375 [-1.0816;  0.0065]        6.8
7  -1.3204 [-2.1888; -0.4520]        4.9
8  -0.4800 [-1.3512;  0.3913]        4.9
9   0.0918 [-0.2549;  0.4385]        8.0
10 -3.2433 [-4.2020; -2.2846]        4.5
11  0.0000 [-0.7427;  0.7427]        5.6
12 -0.7061 [-1.2020; -0.2103]        7.1
13 -0.4724 [-1.2536;  0.3088]        5.4
14 -0.1849 [-0.5071;  0.1372]        8.2
15 -0.0265 [-0.6045;  0.5515]        6.6
16 -1.1647 [-2.0819; -0.2476]        4.7
17 -0.2127 [-0.9651;  0.5397]        5.6
Number of studies: k = 17
                                              95%-CI     t p-value
Random effects model (HK) -0.5861 [-0.9514; -0.2209] -3.40  0.0036
Quantifying heterogeneity:
 tau^2 = 0.2315; tau = 0.4812; I^2 = 72.6% [55.5%; 83.1%]; H = 1.91 [1.50; 2.43]
Test of heterogeneity:
     Q d.f.  p-value
 58.38   16 < 0.0001
Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Hartung-Knapp adjustment for random effects model (df = 16)
                         MD               95%-CI %W(common) %W(random)
Boner 1988          -7.2300 [-21.1141;   6.6541]        2.8        3.1
Boner 1989          -7.0000 [-16.2230;   2.2230]        6.4        6.6
Chudry 1987        -18.4000 [-28.8023;  -7.9977]        5.0        5.3
Comis 1993         -16.8000 [-27.7835;  -5.8165]        4.5        4.8
DeBenedictis 1994a -13.0000 [-22.7710;  -3.2290]        5.7        5.9
DeBenedictis 1994b -16.6000 [-35.8326;   2.6326]        1.5        1.6
DeBenedictis 1995  -13.9000 [-27.6461;  -0.1539]        2.9        3.1
Debelic 1986       -18.2500 [-30.6692;  -5.8308]        3.5        3.8
Henriksen 1988     -29.7000 [-41.6068; -17.7932]        3.8        4.1
Konig 1987         -14.2000 [-25.0013;  -3.3987]        4.7        4.9
Morton 1992        -22.5300 [-33.5382; -11.5218]        4.5        4.8
Novembre 1994f     -13.0400 [-19.5067;  -6.5733]       13.0       12.1
Novembre 1994s     -15.1000 [-23.8163;  -6.3837]        7.1        7.3
Oseid 1995         -14.8000 [-23.7200;  -5.8800]        6.8        7.0
Roberts 1985       -20.0000 [-36.9171;  -3.0829]        1.9        2.1
Shaw 1985          -24.1600 [-33.1791; -15.1409]        6.7        6.9
Todaro 1993        -13.4000 [-18.7042;  -8.0958]       19.3       16.6
Number of studies: k = 17
Number of observations: o = 480
                           MD               95%-CI      z  p-value
Common effect model  -15.5140 [-17.8435; -13.1845] -13.05 < 0.0001
Random effects model -15.6436 [-18.1369; -13.1502] -12.30 < 0.0001
Prediction interval           [-19.9360; -11.3511]                
Quantifying heterogeneity:
 tau^2 = 2.4374 [0.0000; 40.8996]; tau = 1.5612 [0.0000; 6.3953]
 I^2 = 8.9% [0.0%; 45.3%]; H = 1.05 [1.00; 1.35]
Test of heterogeneity:
     Q d.f. p-value
 17.57   16  0.3496
Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Jackson method for confidence interval of tau^2 and tau
- Prediction interval based on t-distribution (df = 15)
        author year  Ne   Me   Se  Nc   Mc   Sc    duration
1   Bontognali 1991  30 0.70 3.76  30 1.27 4.58 <= 3 months
2  Castiglioni 1986 311 0.10 0.21 302 0.20 0.29 <= 3 months
3    Cremonini 1986  21 0.25 0.23  20 0.71 0.29 <= 3 months
4       Grassi 1994  42 0.16 0.29  41 0.45 0.43 <= 3 months
5      Jackson 1984  61 0.11 0.00  60 0.13 0.00 <= 3 months
6      Allegra 1996 223 0.07 0.11 218 0.11 0.14  > 3 months
7     Babolini 1980 254 0.13 0.18 241 0.33 0.27  > 3 months
8        Boman 1983  98 0.20 0.27 105 0.32 0.30  > 3 months
9       Borgia 1981  10 0.05 0.08   9 0.15 0.17  > 3 months
10    Decramer 2005 256 0.10 0.11 267 0.11 0.16  > 3 months
11      Grassi 1976  35 0.14 0.15  34 0.27 0.21  > 3 months
12    Grillage 1985  54 0.10 0.00  55 0.12 0.00  > 3 months
13      Hansen 1994  59 0.11 0.15  70 0.16 0.19  > 3 months
14     Malerba 2004 115 0.06 0.08 119 0.07 0.08  > 3 months
15     McGavin 1985  72 0.42 0.34  76 0.52 0.35  > 3 months
16     Meister 1986  90 0.15 0.15  91 0.20 0.19  > 3 months
17     Meister 1999 122 0.06 0.15 124 0.10 0.15  > 3 months
18     Moretti 2004  63 0.12 0.14  61 0.17 0.17  > 3 months
19       Nowak 1999 147 0.03 0.06 148 0.06 0.12  > 3 months
20    Olivieri 1987 110 0.18 0.31 104 0.33 0.41  > 3 months
21        Parr 1987 243 0.18 0.21 210 0.21 0.21  > 3 months
22        Pela 1999  83 0.17 0.18  80 0.29 0.32  > 3 months
23   Rasmussen 1988  44 0.13 0.21  47 0.14 0.19  > 3 months
Warning in metacont(Ne, Me, Se, Nc, Mc, Sc, data = data3, studlab =
paste(author, : Note, studies with non-positive values for sd.e or sd.c get no
weight in meta-analysis.
                      MD             95%-CI %W(common) %W(random)
Bontognali 1991  -0.5700 [-2.6904;  1.5504]        0.0        0.0
Castiglioni 1986 -0.1000 [-0.1402; -0.0598]        4.9        6.2
Cremonini 1986   -0.4600 [-0.6207; -0.2993]        0.3        2.1
Grassi 1994      -0.2900 [-0.4482; -0.1318]        0.3        2.1
Jackson 1984     -0.0200                           0.0        0.0
Allegra 1996     -0.0400 [-0.0635; -0.0165]       14.2        6.7
Babolini 1980    -0.2000 [-0.2406; -0.1594]        4.8        6.1
Boman 1983       -0.1200 [-0.1984; -0.0416]        1.3        4.5
Borgia 1981      -0.1000 [-0.2216;  0.0216]        0.5        3.0
Decramer 2005    -0.0100 [-0.0334;  0.0134]       14.3        6.7
Grassi 1976      -0.1300 [-0.2163; -0.0437]        1.1        4.2
Grillage 1985    -0.0200                           0.0        0.0
Hansen 1994      -0.0500 [-0.1087;  0.0087]        2.3        5.4
Malerba 2004     -0.0100 [-0.0305;  0.0105]       18.7        6.8
McGavin 1985     -0.1000 [-0.2112;  0.0112]        0.6        3.3
Meister 1986     -0.0500 [-0.0998; -0.0002]        3.2        5.7
Meister 1999     -0.0400 [-0.0775; -0.0025]        5.6        6.3
Moretti 2004     -0.0500 [-0.1049;  0.0049]        2.6        5.5
Nowak 1999       -0.0300 [-0.0516; -0.0084]       16.8        6.8
Olivieri 1987    -0.1500 [-0.2478; -0.0522]        0.8        3.7
Parr 1987        -0.0300 [-0.0688;  0.0088]        5.2        6.2
Pela 1999        -0.1200 [-0.2001; -0.0399]        1.2        4.4
Rasmussen 1988   -0.0100 [-0.0925;  0.0725]        1.2        4.3
Number of studies: k = 21
Number of observations: o = 5055
                          MD             95%-CI      z  p-value
Common effect model  -0.0455 [-0.0544; -0.0367] -10.06 < 0.0001
Random effects model -0.0812 [-0.1085; -0.0538]  -5.82 < 0.0001
Quantifying heterogeneity:
 tau^2 = 0.0027 [0.0000; 0.0123]; tau = 0.0524 [0.0000; 0.1111]
 I^2 = 85.5% [79.1%; 89.9%]; H = 2.63 [2.19; 3.15]
Test of heterogeneity:
      Q d.f.  p-value
 138.08   20 < 0.0001
Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Jackson method for confidence interval of tau^2 and tau
Warning in metacont(Ne, Me, Se, Nc, Mc, Sc, data = data3, studlab =
paste(author, : Note, studies with non-positive values for sd.e or sd.c get no
weight in meta-analysis.
Warning in metacont(x$n.e[sel], x$mean.e[sel], x$sd.e[sel], x$n.c[sel], : Note,
studies with non-positive values for sd.e or sd.c get no weight in
meta-analysis.
Warning in metacont(x$n.e[sel], x$mean.e[sel], x$sd.e[sel], x$n.c[sel], : Note,
studies with non-positive values for sd.e or sd.c get no weight in
meta-analysis.
                      MD             95%-CI %W(common) %W(random)    duration
Bontognali 1991  -0.5700 [-2.6904;  1.5504]        0.0        0.0 <= 3 months
Castiglioni 1986 -0.1000 [-0.1402; -0.0598]        4.9        6.2 <= 3 months
Cremonini 1986   -0.4600 [-0.6207; -0.2993]        0.3        2.1 <= 3 months
Grassi 1994      -0.2900 [-0.4482; -0.1318]        0.3        2.1 <= 3 months
Jackson 1984     -0.0200                           0.0        0.0 <= 3 months
Allegra 1996     -0.0400 [-0.0635; -0.0165]       14.2        6.7  > 3 months
Babolini 1980    -0.2000 [-0.2406; -0.1594]        4.8        6.1  > 3 months
Boman 1983       -0.1200 [-0.1984; -0.0416]        1.3        4.5  > 3 months
Borgia 1981      -0.1000 [-0.2216;  0.0216]        0.5        3.0  > 3 months
Decramer 2005    -0.0100 [-0.0334;  0.0134]       14.3        6.7  > 3 months
Grassi 1976      -0.1300 [-0.2163; -0.0437]        1.1        4.2  > 3 months
Grillage 1985    -0.0200                           0.0        0.0  > 3 months
Hansen 1994      -0.0500 [-0.1087;  0.0087]        2.3        5.4  > 3 months
Malerba 2004     -0.0100 [-0.0305;  0.0105]       18.7        6.8  > 3 months
McGavin 1985     -0.1000 [-0.2112;  0.0112]        0.6        3.3  > 3 months
Meister 1986     -0.0500 [-0.0998; -0.0002]        3.2        5.7  > 3 months
Meister 1999     -0.0400 [-0.0775; -0.0025]        5.6        6.3  > 3 months
Moretti 2004     -0.0500 [-0.1049;  0.0049]        2.6        5.5  > 3 months
Nowak 1999       -0.0300 [-0.0516; -0.0084]       16.8        6.8  > 3 months
Olivieri 1987    -0.1500 [-0.2478; -0.0522]        0.8        3.7  > 3 months
Parr 1987        -0.0300 [-0.0688;  0.0088]        5.2        6.2  > 3 months
Pela 1999        -0.1200 [-0.2001; -0.0399]        1.2        4.4  > 3 months
Rasmussen 1988   -0.0100 [-0.0925;  0.0725]        1.2        4.3  > 3 months
Number of studies: k = 21
Number of observations: o = 5055
                          MD             95%-CI      z  p-value
Common effect model  -0.0455 [-0.0544; -0.0367] -10.06 < 0.0001
Random effects model -0.0812 [-0.1085; -0.0538]  -5.82 < 0.0001
Quantifying heterogeneity:
 tau^2 = 0.0027 [0.0000; 0.0123]; tau = 0.0524 [0.0000; 0.1111]
 I^2 = 85.5% [79.1%; 89.9%]; H = 2.63 [2.19; 3.15]
Test of heterogeneity:
      Q d.f.  p-value
 138.08   20 < 0.0001
Results for subgroups (common effect model):
              k      MD             95%-CI     Q   I^2
<= 3 months   4 -0.1310 [-0.1688; -0.0931] 22.43 86.6%
> 3 months   17 -0.0406 [-0.0497; -0.0314] 94.92 83.1%
Test for subgroup differences (common effect model):
                    Q d.f.  p-value
Between groups  20.73    1 < 0.0001
Within groups  117.35   19 < 0.0001
Results for subgroups (random effects model):
              k      MD             95%-CI  tau^2    tau
<= 3 months   4 -0.2763 [-0.4995; -0.0531] 0.0350 0.1871
> 3 months   17 -0.0646 [-0.0900; -0.0391] 0.0020 0.0443
Test for subgroup differences (random effects model):
                  Q d.f. p-value
Between groups 3.41    1  0.0647
Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Jackson method for confidence interval of tau^2 and tau

Warning in metacont(Ne, Me, Se, Nc, Mc, Sc, data = data3, subset = duration ==
: Note, studies with non-positive values for sd.e or sd.c get no weight in
meta-analysis.
Number of studies: k = 4
Number of observations: o = 918
                          MD             95%-CI     z  p-value
Common effect model  -0.1310 [-0.1688; -0.0931] -6.78 < 0.0001
Random effects model -0.2763 [-0.4995; -0.0531] -2.43   0.0153
Quantifying heterogeneity:
 tau^2 = 0.0350 [0.0000; 0.7472]; tau = 0.1871 [0.0000; 0.8644]
 I^2 = 86.6% [67.6%; 94.5%]; H = 2.73 [1.76; 4.25]
Test of heterogeneity:
     Q d.f.  p-value
 22.43    3 < 0.0001
Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Jackson method for confidence interval of tau^2 and tau
Number of studies: k = 4
Number of observations: o = 918
                          MD             95%-CI     z  p-value
Common effect model  -0.1310 [-0.1688; -0.0931] -6.78 < 0.0001
Random effects model -0.2763 [-0.4995; -0.0531] -2.43   0.0153
Quantifying heterogeneity:
 tau^2 = 0.0350 [0.0000; 0.7472]; tau = 0.1871 [0.0000; 0.8644]
 I^2 = 86.6% [67.6%; 94.5%]; H = 2.73 [1.76; 4.25]
Test of heterogeneity:
     Q d.f.  p-value
 22.43    3 < 0.0001
Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Jackson method for confidence interval of tau^2 and tau
metacor function for meta-analysis of correlations,metainc function for meta-analysis of incidence rate ratios,metaprop function for meta-analysis of single proportions.      author year  Ne  Nc   logHR selogHR
1 FCG on CLL 1996  53  52 -0.5920  0.3450
2  Leporrier 2001 341 597 -0.0791  0.0787
3        Rai 2000 195 200 -0.2370  0.1440
4      Robak 2000 133 117  0.1630  0.3120
                    HR           95%-CI %W(common) %W(random)
FCG on CLL 1996 0.5532 [0.2813; 1.0878]        3.7        5.8
Leporrier 2001  0.9239 [0.7919; 1.0780]       70.7       59.8
Rai 2000        0.7890 [0.5950; 1.0463]       21.1       27.3
Robak 2000      1.1770 [0.6386; 2.1695]        4.5        7.1
Number of studies: k = 4
                         HR           95%-CI     z p-value
Common effect model  0.8865 [0.7787; 1.0093] -1.82  0.0688
Random effects model 0.8736 [0.7388; 1.0331] -1.58  0.1142
Quantifying heterogeneity:
 tau^2 = 0.0061 [0.0000; 0.8546]; tau = 0.0778 [0.0000; 0.9245]
 I^2 = 17.2% [0.0%; 87.3%]; H = 1.10 [1.00; 2.81]
Test of heterogeneity:
    Q d.f. p-value
 3.62    3  0.3049
Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Jackson method for confidence interval of tau^2 and tau
                author  year  N  mean  SE corr
1       Skrabal et al. 1981a 20  -4.5 2.1 0.49
2       Skrabal et al. 1981b 20  -0.5 1.7 0.54
3     MacGregor et al.  1982 23  -4.0 1.9 0.41
4        Khaw and Thom  1982 20  -2.4 1.1 0.83
5      Richards et al.  1984 12  -1.0 3.4 0.50
6         Smith et al.  1985 20   0.0 1.9 0.50
7        Kaplan et al.  1985 16  -5.8 1.6 0.65
8       Zoccali et al.  1985 23  -3.0 3.0 0.50
9        Matlou et al.  1986 36  -3.0 1.5 0.61
10       Barden et al.  1986 44  -1.5 1.4 0.44
11   Poulter and Sever  1986 19   2.0 2.2 0.36
12      Grobbee et al.  1987 40  -0.3 1.5 0.61
13      Krishna et al.  1989 10  -8.0 2.2 0.48
14 Mullen and O'Connor 1990a 24   3.0 2.0 0.50
15 Mullen and O'Connor 1990b 24   1.4 2.0 0.50
16        Patki et al.  1990 37 -13.1 0.7 0.53
17       Valdes et al.  1991 24  -3.0 2.0 0.50
18       Barden et al.  1991 39  -0.6 0.6 0.88
19     Overlack et al.  1991 12   3.0 2.0 0.50
20        Smith et al.  1992 22  -1.7 2.5 0.29
21 Fotherby and Potter  1992 18  -6.0 2.5 0.81
                                MD               95%-CI %W(common) %W(random)
Skrabal et al. 1981a       -4.5000 [ -8.6159;  -0.3841]        2.2        4.7
Skrabal et al. 1981b       -0.5000 [ -3.8319;   2.8319]        3.3        4.9
MacGregor et al. 1982      -4.0000 [ -7.7239;  -0.2761]        2.6        4.8
Khaw and Thom 1982         -2.4000 [ -4.5560;  -0.2440]        7.9        5.2
Richards et al. 1984       -1.0000 [ -7.6639;   5.6639]        0.8        3.8
Smith et al. 1985           0.0000 [ -3.7239;   3.7239]        2.6        4.8
Kaplan et al. 1985         -5.8000 [ -8.9359;  -2.6641]        3.7        5.0
Zoccali et al. 1985        -3.0000 [ -8.8799;   2.8799]        1.1        4.1
Matlou et al. 1986         -3.0000 [ -5.9399;  -0.0601]        4.2        5.0
Barden et al. 1986         -1.5000 [ -4.2439;   1.2439]        4.9        5.1
Poulter and Sever 1986      2.0000 [ -2.3119;   6.3119]        2.0        4.6
Grobbee et al. 1987        -0.3000 [ -3.2399;   2.6399]        4.2        5.0
Krishna et al. 1989        -8.0000 [-12.3119;  -3.6881]        2.0        4.6
Mullen and O'Connor 1990a   3.0000 [ -0.9199;   6.9199]        2.4        4.7
Mullen and O'Connor 1990b   1.4000 [ -2.5199;   5.3199]        2.4        4.7
Patki et al. 1990         -13.1000 [-14.4720; -11.7280]       19.5        5.3
Valdes et al. 1991         -3.0000 [ -6.9199;   0.9199]        2.4        4.7
Barden et al. 1991         -0.6000 [ -1.7760;   0.5760]       26.5        5.4
Overlack et al. 1991        3.0000 [ -0.9199;   6.9199]        2.4        4.7
Smith et al. 1992          -1.7000 [ -6.5999;   3.1999]        1.5        4.4
Fotherby and Potter 1992   -6.0000 [-10.8999;  -1.1001]        1.5        4.4
Number of studies: k = 21
                          MD             95%-CI      z  p-value
Common effect model  -3.7146 [-4.3197; -3.1096] -12.03 < 0.0001
Random effects model -2.3808 [-4.7560; -0.0055]  -1.96   0.0495
Quantifying heterogeneity:
 tau^2 = 27.0262 [8.5264; 41.2225]; tau = 5.1987 [2.9200; 6.4205]
 I^2 = 92.5% [89.9%; 94.5%]; H = 3.66 [3.14; 4.25]
Test of heterogeneity:
      Q d.f.  p-value
 267.24   20 < 0.0001
Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Jackson method for confidence interval of tau^2 and tau
                   author year         b      SE
1         Hiatt and Bawol 1984  0.004340 0.00247
2            Hiatt et al. 1988  0.010900 0.00410
3           Willett t al. 1987  0.028400 0.00564
4        Schatzkin et al. 1987  0.118000 0.04760
5           Harvey et al. 1987  0.012100 0.00429
6        Rosenberg et al. 1982  0.087000 0.02320
7          Webster et al. 1983  0.003110 0.00373
8  Paganini-Hill and Ross 1983  0.000000 0.00940
9         Byers and Funch 1982  0.005970 0.00658
10    Rohan and McMichael 1988  0.047900 0.02050
11        Talamini et al. 1984  0.038900 0.00768
12       O'Connell et al. 1987  0.203000 0.09460
13      Harris and Wynder 1988 -0.006730 0.00419
14              Le et al. 1984  0.011100 0.00481
15      La Vecchia et al. 1985  0.014800 0.00635
16            Begg et al. 1983 -0.000787 0.00867
                              logRR            95%-CI %W(common) %W(random)
Hiatt and Bawol 1984         0.0043 [-0.0005; 0.0092]       28.5        9.6
Hiatt et al. 1988            0.0109 [ 0.0029; 0.0189]       10.3        8.8
Willett t al. 1987           0.0284 [ 0.0173; 0.0395]        5.5        8.0
Schatzkin et al. 1987        0.1180 [ 0.0247; 0.2113]        0.1        0.5
Harvey et al. 1987           0.0121 [ 0.0037; 0.0205]        9.4        8.7
Rosenberg et al. 1982        0.0870 [ 0.0415; 0.1325]        0.3        1.9
Webster et al. 1983          0.0031 [-0.0042; 0.0104]       12.5        9.0
Paganini-Hill and Ross 1983  0.0000 [-0.0184; 0.0184]        2.0        5.8
Byers and Funch 1982         0.0060 [-0.0069; 0.0189]        4.0        7.4
Rohan and McMichael 1988     0.0479 [ 0.0077; 0.0881]        0.4        2.3
Talamini et al. 1984         0.0389 [ 0.0238; 0.0540]        2.9        6.8
O'Connell et al. 1987        0.2030 [ 0.0176; 0.3884]        0.0        0.1
Harris and Wynder 1988      -0.0067 [-0.0149; 0.0015]        9.9        8.8
Le et al. 1984               0.0111 [ 0.0017; 0.0205]        7.5        8.5
La Vecchia et al. 1985       0.0148 [ 0.0024; 0.0272]        4.3        7.6
Begg et al. 1983            -0.0008 [-0.0178; 0.0162]        2.3        6.2
Number of studies: k = 16
                      logRR           95%-CI    z  p-value
Common effect model  0.0082 [0.0056; 0.0108] 6.24 < 0.0001
Random effects model 0.0131 [0.0062; 0.0199] 3.73   0.0002
Quantifying heterogeneity:
 tau^2 = 0.0001 [0.0002; 0.0013]; tau = 0.0110 [0.0135; 0.0364]
 I^2 = 80.1% [68.5%; 87.4%]; H = 2.24 [1.78; 2.82]
Test of heterogeneity:
     Q d.f.  p-value
 75.31   15 < 0.0001
Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Jackson method for confidence interval of tau^2 and tau
meta 目前版本是 version 6.2-1,如果閱讀 Meta-Analysis with R (Use R!) 遇到問題,可能要安裝舊版本。 https://tinyurl.com/dt4y5drsinstall.packages("remotes")
remotes::install_github("guido-s/meta", ref = "R-book-first-edition")
read.csv() 可以讀取網址,所以read.csv('https://www.uniklinik-freiburg.de/fileadmin/mediapool/08_institute/biometrie-statistik/Dateien/Englisch/Studies_and_Teaching/Educational_Books/Meta-Analysis_with_R/Datasets/dataset01.csv')
可以讀取 dataset01.csv ,依此類推。
R version 4.3.1 (2023-06-16)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Sonoma 14.2.1
Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: Asia/Taipei
tzcode source: internal
attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     
other attached packages:
 [1] repr_1.1.6      lubridate_1.9.3 forcats_1.0.0   stringr_1.5.1  
 [5] dplyr_1.1.4     purrr_1.0.2     readr_2.1.4     tidyr_1.3.0    
 [9] tibble_3.2.1    ggplot2_3.4.4   tidyverse_2.0.0 meta_6.5-0     
loaded via a namespace (and not attached):
 [1] utf8_1.2.4          generics_0.1.3      xml2_1.3.5         
 [4] stringi_1.8.3       lattice_0.21-8      hms_1.1.3          
 [7] lme4_1.1-34         digest_0.6.33       magrittr_2.0.3     
[10] timechange_0.2.0    evaluate_0.23       grid_4.3.1         
[13] CompQuadForm_1.4.3  fastmap_1.1.1       jsonlite_1.8.8     
[16] Matrix_1.6-1.1      fansi_1.0.6         scales_1.3.0       
[19] numDeriv_2016.8-1.1 cli_3.6.2           rlang_1.1.2        
[22] munsell_0.5.0       splines_4.3.1       base64enc_0.1-3    
[25] withr_2.5.2         yaml_2.3.8          tools_4.3.1        
[28] tzdb_0.4.0          nloptr_2.0.3        minqa_1.2.6        
[31] metafor_4.4-0       colorspace_2.1-0    mathjaxr_1.6-0     
[34] boot_1.3-28.1       vctrs_0.6.5         R6_2.5.1           
[37] lifecycle_1.0.4     htmlwidgets_1.6.4   MASS_7.3-60        
[40] pkgconfig_2.0.3     pillar_1.9.0        gtable_0.3.4       
[43] glue_1.6.2          Rcpp_1.0.11         xfun_0.41          
[46] tidyselect_1.2.0    rstudioapi_0.15.0   knitr_1.45         
[49] htmltools_0.5.7     nlme_3.1-162        rmarkdown_2.25     
[52] compiler_4.3.1      metadat_1.2-0