A g-computation [Validation Overall]
A.1 Parametric g-formula
Based on Hernan and Robins, 2020 Chapter 13
Zou’s modified Poisson regression code
A.2 NEW FUNCTION
# function to calculate difference in means
standardization <- function(data, indices, treatment, outcome, formula1) {
treatment1 <- enquo(treatment)
outcome1 <- enquo(outcome)
# create a dataset with 3 copies of each subject
d <- data[indices, ] # 1st copy: equal to original one`
d <- d %>% mutate(interv=-1,
seqno = 1:n()) # for gee estimation
d0 <- d # 2nd copy: treatment set to 0, outcome to missing
d0 <- d0 %>% mutate(interv=0,
!!treatment1 := first(levels(droplevels(!!treatment1))),
!!outcome1 := NA)
d1 <- d # 3rd copy: treatment set to 1, outcome to missing
d1 <- d1 %>% mutate(interv=1,
!!treatment1 := last(levels(droplevels(!!treatment1))),
!!outcome1 := NA)
d.onesample <- rbind(d, d0, d1) # combining datasets
# linear model to estimate mean outcome conditional on treatment and confounders
# parameters are estimated using original observations only (interv= -1)
# parameter estimates are used to predict mean outcome for observations with set
# treatment (interv=0 and interv=1)
fit <- glm(formula = formula1 ,data = d.onesample, family = "binomial")
d.onesample$predicted_meanY <- predict(fit, d.onesample, type="response")
# Zou, 2004
# require(geepack)
# fit <- geeglm(formula = formula1,
# data = d.onesample,
# family = poisson(link = "log"),
# id = seqno,
# corstr = "exchangeable")
#
# d.onesample$predicted_meanY <- predict(fit, d.onesample, type="response")
# estimate mean outcome in each of the groups interv=-1, interv=0, and interv=1
return(c(
mean(d.onesample$predicted_meanY[d.onesample$interv == -1], na.rm=T),
mean(d.onesample$predicted_meanY[d.onesample$interv == 0], na.rm=T),
mean(d.onesample$predicted_meanY[d.onesample$interv == 1], na.rm=T),
mean(d.onesample$predicted_meanY[d.onesample$interv == 1], na.rm=T) -
mean(d.onesample$predicted_meanY[d.onesample$interv == 0], na.rm=T)
))
}
A.2.1 ESTIMATION
f <- SEROPOSITIVE ~ work_out1 + edad + sex_male
library(boot)
# bootstrap
results <- boot(data = dat,
statistic = standardization,
treatment = work_out1, outcome = SEROPOSITIVE, formula1 = f, #parameters from function
R = 5)
# generating confidence intervals
se <- c(sd(results$t[, 1]),
sd(results$t[, 2]),
sd(results$t[, 3]),
sd(results$t[, 4]))
mean <- results$t0
ll <- mean - qnorm(0.975) * se
ul <- mean + qnorm(0.975) * se
bootstrap <-data.frame(cbind(type=c("Observed", "No Treatment", "Treatment", "Treatment - No Treatment"),
mean, se, ll, ul)) %>%
mutate_at(.vars = c(2:5), ~as.numeric(as.character(.)))
kable(bootstrap, digits = 5)
type | mean | se | ll | ul |
---|---|---|---|---|
Observed | 0.48771 | 0.01375 | 0.46076 | 0.51466 |
No Treatment | 0.41885 | 0.01957 | 0.38049 | 0.45721 |
Treatment | 0.69605 | 0.02694 | 0.64325 | 0.74885 |
Treatment - No Treatment | 0.27720 | 0.03356 | 0.21141 | 0.34298 |
A.3 RISCA package
To compute Marginal effects of the treatment (ATE) based on RISCA package
A.3.1 Using logistic regression as the Q-model
library(RISCA)
dat_gf <- dat %>%
dplyr::select(viaje_ult_mes, work_out1, edad, SEROPOSITIVE, sex_male) %>%
mutate(id = seq(1:n()),
time = 0,
viaje_ult_mes = as.integer(as.numeric(viaje_ult_mes)-1),
work_out1 = as.numeric(work_out1)-1,
SEROPOSITIVE = as.integer(SEROPOSITIVE),
edad = as.numeric(edad)) %>%
filter(complete.cases(.)) %>%
as.data.frame()
glm.multi <- glm(formula = f, data=dat_gf, family = binomial(link=logit))
gc.ate1 <- gc.logistic(glm.obj=glm.multi, data=dat_gf, group = "work_out1", effect="ATE",
var.method="bootstrap", iterations=1000, n.cluster=1)
gc.ate1.dat <-data.frame(cbind(type=c("No Treatment", "Treatment", "Treatment - No Treatment"),
bind_rows(gc.ate1$p0, gc.ate1$p1, gc.ate1$delta)))
kable(gc.ate1.dat, digits = 5)
type | estimate | ci.lower | ci.upper | std.error | |
---|---|---|---|---|---|
2.5%…1 | No Treatment | 0.41906 | 0.38969 | 0.44671 | NA |
2.5%…2 | Treatment | 0.69606 | 0.64620 | 0.74445 | NA |
2.5%…3 | Treatment - No Treatment | 0.27701 | 0.21722 | 0.33818 | 0.03015 |