Chapter 3 Multiparameter Models

Example 1: Independent Beta-binomial model

Assume an independent binomial model, YsindBin(ns,θs), i.e. ,p(yθ)=Ss=1p(ysθs)=Ss=1(nsys)θyss(1θs)nsys and assume independent beta priors distribution: p(θ)=Ss=1p(θs)=Ss=1θas1s(1θs)bs1Beta(as,bs)I(0<θs<1) Then we have p(θy)Ss=1Beta(θsas+ys,bs+nsys).

Example 2: Normal model with unknown mean and variance

Scaled-inverse χ2-distribution: If σ2IG(a,b), then σ2Invχ2(v,s2) where

  • a=v/2 and b=vs2/2,
  • or equivalently, v=2a and s2=b/a.

Location-scale t-distribution: tv(m,s2)vN(m,s2).

Normal-Inv-χ2 distribution: μσ2N(m,σ2/k) and σ2Invχ2(v,s2), then the kernel of this joint density is p(μ,σ2)(σ2)(v+3)/2e12σ2[k(μm)2+vs2] In addition, the marginal distribution for μ is tv(m,s2/k).

Jeffrey prior can be shown to be p(μ,σ2)(1/σ2)3/2 but reference prior finds that p(μ,σ2)1/σ2 is more appropriate. Under the reference prior, the posterior is p(μσ2,y)N(ˉy,σ2/n)σ2yInvχ2(n1,S2) and the marginal posterior for μ is μytn1(ˉy,S2/n).

To predict ˜yN(μ,σ2), we can write ˜y=μ+ϵ with μσ2,yN(ˉy,σ2/n) and ϵσ2,yN(0,σ2). Thus ˜yσ2,yN(ˉy,σ2[1+1/n]) Because σ2yInvχ2(n1,S2), we have ˜yytn1(ˉy,S2[1+1/n]).

The conjugate prior for μ and σ2 is μσ2N(m,σ2/k)σ2Invχ2(v,s2) where s2 serves as a prior guess about σ2 and v controls how certain we are about that guess. The posterior under the prior is μ|σ2,yN(m,σ2/k)σ2|ylnvχ2(v,(s)2) where k=k+n, m=[km+nˉy]/k , v=v+n and v(s)2=vs2+(n1)S2+knk(ˉym)2. The marginal posterior for μ is μytv(m,(s)2/k)

Example 3: Multinomial-Dirichlet

Suppose Y=(Y1,,YK)Mult(n,π) with pmf p(y)=n!Kk=1πykkyk!, let πDir(a) with concentration parmaeter a=(a1,,aK) where ak>0 for all k.

Dirichlet distribution: The pdf of π is p(π)=1Beta(a)Kk=1πak1k with Kk=1πk=1 and Beta(a) is a multinomial beta function, i.e. Beta(a)=Kk=1Γ(ak)Γ(Kk=1ak). E(πk)=ak/a0, V(πk)=ak(a0ak)/a20(a0+1) where a0=Kk=1ak.

Marginally, each component of a Dirichlet distribution is a Beta distribution with πkBe(ak,a0ak).

The conjugate prior for a multinomial distribution with unknown probabilty vector π is a Dirichlet distribution. The Jeffery prior is a Dirichlet distribution with ak=0.5 for all k.

The posterior under a Direchlet prior is p(πy)Kk=1πak+yk1kπyDir(a+y)

Example 4: Multivariate Normal

p(y)=(2π)k/2|Σ|1/2exp(12(yμ)TΣ1(yμ))

Let YN(μ,Σ) with precision matrix Ω=Σ1

  • If Σk,k=0, then Yk and Yk are independent of each other
  • If Ωk,k=0, then Yk and Yk are conditionally independent of each other given Yj for jk,k

Conjugate inference: let YiN(μ,S2) with conjugate prior μNk(m,C), the posterior μyN(m,C) where C=[C1+nS1]1 and m=C[C1m+nS1ˉy].

Let Σ have an inverse Wishart distribution, i.e. ΣIW(v,W1) with degree of freedom v>K1 and positive definite scale matrix W. A multivariate generalization of the normal-scaled-inverse-χ2 distribution is the normal-inverse Wishart distribution. For a vector μRK and K×K matrix Σ, the normal-inverse Wishart distribution is μΣN(m,Σ/c)ΣIW(v,W1) The marginal distribution for μ is a multivariate t-distribution, i.e. μtvK+1(m,W/[c(vK+1)]). The posterior distribution is μΣ,yN(ˉy,Σ/n)ΣyIW(n1,S1)