1 Introduction

You can install the complete tidyverse with a single line of code:

install.packages("tidyverse")

Once you have installed the package, you can load it with the library() function:

library(tidyverse)

Now install the nycflights13 dataset with this command

install.packages("nycflights13") 

Let’s preview the datasets from the nycflights13 packages.

Type following code in your r script and run the code

require(nycflights13)
airlines
airports
planes
flights
weather

Here’s the following output

require(nycflights13)
airlines
## # A tibble: 16 x 2
##    carrier                        name
##      <chr>                       <chr>
##  1      9E           Endeavor Air Inc.
##  2      AA      American Airlines Inc.
##  3      AS        Alaska Airlines Inc.
##  4      B6             JetBlue Airways
##  5      DL        Delta Air Lines Inc.
##  6      EV    ExpressJet Airlines Inc.
##  7      F9      Frontier Airlines Inc.
##  8      FL AirTran Airways Corporation
##  9      HA      Hawaiian Airlines Inc.
## 10      MQ                   Envoy Air
## 11      OO       SkyWest Airlines Inc.
## 12      UA       United Air Lines Inc.
## 13      US             US Airways Inc.
## 14      VX              Virgin America
## 15      WN      Southwest Airlines Co.
## 16      YV          Mesa Airlines Inc.
airports
## # A tibble: 1,458 x 8
##      faa                           name      lat        lon   alt    tz
##    <chr>                          <chr>    <dbl>      <dbl> <int> <dbl>
##  1   04G              Lansdowne Airport 41.13047  -80.61958  1044    -5
##  2   06A  Moton Field Municipal Airport 32.46057  -85.68003   264    -6
##  3   06C            Schaumburg Regional 41.98934  -88.10124   801    -6
##  4   06N                Randall Airport 41.43191  -74.39156   523    -5
##  5   09J          Jekyll Island Airport 31.07447  -81.42778    11    -5
##  6   0A9 Elizabethton Municipal Airport 36.37122  -82.17342  1593    -5
##  7   0G6        Williams County Airport 41.46731  -84.50678   730    -5
##  8   0G7  Finger Lakes Regional Airport 42.88356  -76.78123   492    -5
##  9   0P2   Shoestring Aviation Airfield 39.79482  -76.64719  1000    -5
## 10   0S9          Jefferson County Intl 48.05381 -122.81064   108    -8
## # ... with 1,448 more rows, and 2 more variables: dst <chr>, tzone <chr>
planes
## # A tibble: 3,322 x 9
##    tailnum  year                    type     manufacturer     model
##      <chr> <int>                   <chr>            <chr>     <chr>
##  1  N10156  2004 Fixed wing multi engine          EMBRAER EMB-145XR
##  2  N102UW  1998 Fixed wing multi engine AIRBUS INDUSTRIE  A320-214
##  3  N103US  1999 Fixed wing multi engine AIRBUS INDUSTRIE  A320-214
##  4  N104UW  1999 Fixed wing multi engine AIRBUS INDUSTRIE  A320-214
##  5  N10575  2002 Fixed wing multi engine          EMBRAER EMB-145LR
##  6  N105UW  1999 Fixed wing multi engine AIRBUS INDUSTRIE  A320-214
##  7  N107US  1999 Fixed wing multi engine AIRBUS INDUSTRIE  A320-214
##  8  N108UW  1999 Fixed wing multi engine AIRBUS INDUSTRIE  A320-214
##  9  N109UW  1999 Fixed wing multi engine AIRBUS INDUSTRIE  A320-214
## 10  N110UW  1999 Fixed wing multi engine AIRBUS INDUSTRIE  A320-214
## # ... with 3,312 more rows, and 4 more variables: engines <int>,
## #   seats <int>, speed <int>, engine <chr>
flights
## # A tibble: 336,776 x 19
##     year month   day dep_time sched_dep_time dep_delay arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>
##  1  2013     1     1      517            515         2      830
##  2  2013     1     1      533            529         4      850
##  3  2013     1     1      542            540         2      923
##  4  2013     1     1      544            545        -1     1004
##  5  2013     1     1      554            600        -6      812
##  6  2013     1     1      554            558        -4      740
##  7  2013     1     1      555            600        -5      913
##  8  2013     1     1      557            600        -3      709
##  9  2013     1     1      557            600        -3      838
## 10  2013     1     1      558            600        -2      753
## # ... with 336,766 more rows, and 12 more variables: sched_arr_time <int>,
## #   arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>,
## #   origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
## #   minute <dbl>, time_hour <dttm>
weather
## # A tibble: 26,130 x 15
##    origin  year month   day  hour  temp  dewp humid wind_dir wind_speed
##     <chr> <dbl> <dbl> <int> <int> <dbl> <dbl> <dbl>    <dbl>      <dbl>
##  1    EWR  2013     1     1     0 37.04 21.92 53.97      230   10.35702
##  2    EWR  2013     1     1     1 37.04 21.92 53.97      230   13.80936
##  3    EWR  2013     1     1     2 37.94 21.92 52.09      230   12.65858
##  4    EWR  2013     1     1     3 37.94 23.00 54.51      230   13.80936
##  5    EWR  2013     1     1     4 37.94 24.08 57.04      240   14.96014
##  6    EWR  2013     1     1     6 39.02 26.06 59.37      270   10.35702
##  7    EWR  2013     1     1     7 39.02 26.96 61.63      250    8.05546
##  8    EWR  2013     1     1     8 39.02 28.04 64.43      240   11.50780
##  9    EWR  2013     1     1     9 39.92 28.04 62.21      250   12.65858
## 10    EWR  2013     1     1    10 39.02 28.04 64.43      260   12.65858
## # ... with 26,120 more rows, and 5 more variables: wind_gust <dbl>,
## #   precip <dbl>, pressure <dbl>, visib <dbl>, time_hour <dttm>

To get useful metadata on the airlines data set, type

help(airlines)

A help page in RStudio appears providing metatdata on the airlines data set

Do the same for airports, planes, flights and weather