References

Agresti, A. (2015). Foundations of linear and generalized linear models. John Wiley & Sons. https://www.wiley.com/en-us/Foundations+of+Linear+and+Generalized+Linear+Models-p-9781118730034

Arnold, J. B. (2019). ggthemes: Extra themes, scales and geoms for ’ggplot2’. https://CRAN.R-project.org/package=ggthemes

Attali, D., & Baker, C. (2019). ggExtra: Add marginal histograms to ’ggplot2’, and more ’ggplot2’ enhancements [Manual]. https://CRAN.R-project.org/package=ggExtra

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278. https://doi.org/10.1016/j.jml.2012.11.001

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2020). lme4: Linear mixed-effects models using Eigen’ and S4. https://CRAN.R-project.org/package=lme4

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01

Better BibTeX for zotero :: Better BibTeX for zotero. (2020). https://retorque.re/zotero-better-bibtex/

BibTeX. (2020). http://www.bibtex.org/

Bickel, P. J., Hammel, E. A., & O’Connell, J. W. (1975). Sex bias in graduate admissions: Data from Berkeley. Science, 187(4175), 398–404. https://doi.org/10.1126/science.187.4175.398

Borges, JL. (1941). El jardin de senderos que se bifurcan. Buenos Aires: Sur. Translated by D. A. Yates (1964). In Labyrinths: Selected Stories & Other Writings (pp. 19–29). New Directions.

Brilleman, S., Crowther, M., Moreno-Betancur, M., Buros Novik, J., & Wolfe, R. (2018). Joint longitudinal and time-to-event models via Stan. https://github.com/stan-dev/stancon_talks/

Bryan, J., the STAT 545 TAs, & Hester, J. (2020). Happy Git and GitHub for the useR. https://happygitwithr.com

Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80(1), 1–28. https://doi.org/10.18637/jss.v080.i01

Bürkner, P.-C. (2018). Advanced Bayesian multilevel modeling with the R package brms. The R Journal, 10(1), 395–411. https://doi.org/10.32614/RJ-2018-017

Bürkner, P.-C. (2020a). brms: Bayesian regression models using ’Stan’. https://CRAN.R-project.org/package=brms

Bürkner, P.-C. (2020b). brms reference manual, Version 2.13.5. https://CRAN.R-project.org/package=brms/brms.pdf

Bürkner, P.-C. (2020c). Handle missing values with brms. https://CRAN.R-project.org/package=brms/vignettes/brms_missings.html

Bürkner, P.-C. (2020d). Parameterization of response distributions in brms. https://CRAN.R-project.org/package=brms/vignettes/brms_families.html

Bürkner, P.-C. (2020e). Define custom response distributions with brms. https://CRAN.R-project.org/package=brms/vignettes/brms_customfamilies.html

Bürkner, P.-C. (2020f). Estimating distributional models with brms. https://CRAN.R-project.org/package=brms/vignettes/brms_distreg.html

Bürkner, P.-C. (2020g). Estimating multivariate models with brms. https://CRAN.R-project.org/package=brms/vignettes/brms_multivariate.html

Bürkner, P.-C. (2020h). Estimating non-linear models with brms. https://CRAN.R-project.org/package=brms/vignettes/brms_nonlinear.html

Bürkner, P.-C. (2020i). Estimating phylogenetic multilevel models with brms. https://CRAN.R-project.org/package=brms/vignettes/brms_phylogenetics.html

Bürkner, P.-C., Gabry, J., Kay, M., & Vehtari, A. (2020). posterior: Tools for working with posterior distributions. https://mc-stan.org/posterior

Bürkner, P.-C., & Vuorre, M. (2019). Ordinal regression models in psychology: A tutorial. Advances in Methods and Practices in Psychological Science, 2(1), 77–101. https://doi.org/10.1177/2515245918823199

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1). https://doi.org/10.18637/jss.v076.i01

Carvalho, C. M., Polson, N. G., & Scott, J. G. (2009). Handling sparsity via the horseshoe. Artificial Intelligence and Statistics, 73–80. http://proceedings.mlr.press/v5/carvalho09a/carvalho09a.pdf

Casella, G., & George, E. I. (1992). Explaining the Gibbs sampler. The American Statistician, 46(3), 167–174. https://doi.org/10.1080/00031305.1992.10475878

Clarke, E., & Sherrill-Mix, S. (2017). ggbeeswarm: Categorical scatter (violin point) plots [Manual]. https://CRAN.R-project.org/package=ggbeeswarm

Cushman, F., Young, L., & Hauser, M. (2006). The role of conscious reasoning and intuition in moral judgment: Testing three principles of harm. Psychological Science, 17(12), 1082–1089. https://doi.org/10.1111/j.1467-9280.2006.01834.x

Efron, B., & Morris, C. (1977). Stein’s paradox in statistics. Scientific American, 236(5), 119–127. https://doi.org/10.1038/scientificamerican0577-119

Enders, C. K. (2010). Applied missing data analysis. Guilford press. http://www.appliedmissingdata.com/

Fernández i Marín, X. (2016). ggmcmc: Analysis of MCMC samples and Bayesian inference. Journal of Statistical Software, 70(9), 1–20. https://doi.org/10.18637/jss.v070.i09

Fernández i Marín, X. (2020). ggmcmc: Tools for analyzing MCMC simulations from Bayesian inference [Manual]. https://CRAN.R-project.org/package=ggmcmc

Gabry, J. (2020a). loo reference manual, Version 2.3.1. https://CRAN.R-project.org/package=loo/loo.pdf

Gabry, J. (2020b). Plotting MCMC draws using the bayesplot package. https://CRAN.R-project.org/package=bayesplot/vignettes/plotting-mcmc-draws.html

Gabry, J., & Goodrich, B. (2020). rstanarm: Bayesian applied regression modeling via stan [Manual]. https://CRAN.R-project.org/package=rstanarm

Gabry, J., & Mahr, T. (2019). bayesplot: Plotting for Bayesian models. https://CRAN.R-project.org/package=bayesplot

Gabry, J., & Modrák, M. (2020). Visual MCMC diagnostics using the bayesplot package. https://CRAN.R-project.org/package=bayesplot/vignettes/plotting-mcmc-draws.html

Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A. (2019). Visualization in Bayesian workflow. Journal of the Royal Statistical Society: Series A (Statistics in Society), 182(2), 389–402. https://doi.org/10.1111/rssa.12378

Garnier, S. (2018). viridis: Default color maps from ’matplotlib’ [Manual]. https://CRAN.R-project.org/package=viridis

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (Third Edition). CRC press. https://stat.columbia.edu/~gelman/book/

Gelman, A., Goodrich, B., Gabry, J., & Vehtari, A. (2019). R-squared for Bayesian regression models. The American Statistician, 73(3), 307–309. https://doi.org/10.1080/00031305.2018.1549100

Gelman, A., & Loken, E. (2013). The garden of forking paths: Why multiple comparisons can be a problem, even when there is no “fishing expedition” or “p-hacking” and the research hypothesis was posited ahead of time. 17. https://stat.columbia.edu/~gelman/research/unpublished/p_hacking.pdf

Gelman, A., Simpson, D., & Betancourt, M. (2017). The prior can often only be understood in the context of the likelihood. Entropy, 19(10), 555. https://doi.org/10.3390/e19100555

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6(6), 721–741. https://doi.org/10.1109/TPAMI.1984.4767596

Gershoff, E. T. (2013). Spanking and child development: We know enough now to stop hitting our children. Child Development Perspectives, 7(3), 133–137. https://doi.org/10.1111/cdep.12038

Gershoff, E. T., & Grogan-Kaylor, A. (2016). Spanking and child outcomes: Old controversies and new meta-analyses. Journal of Family Psychology, 30(4), 453. https://doi.org/10.1037/fam0000191

Grafen, A., & Hails, R. (2002). Modern statistics for the life sciences. Oxford University Press. https://global.oup.com/academic/product/modern-statistics-for-the-life-sciences-9780199252312?

Grantham, N. (2019). ggdark: Dark mode for ’ggplot2’ themes [Manual]. https://CRAN.R-project.org/package=ggdark

Grolemund, G., & Wickham, H. (2017). R for data science. O’Reilly. https://r4ds.had.co.nz

Healy, K. (2018). Data visualization: A practical introduction. Princeton University Press. https://socviz.co/

Henderson, E. (2020). ghibli: Studio ghibli colour palettes [Manual]. https://CRAN.R-project.org/package=ghibli

Henry, L., & Wickham, H. (2020). purrr: Functional programming tools. https://CRAN.R-project.org/package=purrr

Hinde, K., & Milligan, L. A. (2011). Primate milk: Proximate mechanisms and ultimate perspectives. Evolutionary Anthropology: Issues, News, and Reviews, 20(1), 9–23. https://doi.org/10.1002/evan.20289

Howell, N. (2001). Demography of the dobe! Kung (2nd Edition). Routledge. https://www.routledge.com/Demography-of-the-Dobe-Kung/Howell/p/book/9780202306490

Howell, N. (2010). Life histories of the Dobe! Kung: Food, fatness, and well-being over the life span (Vol. 4). Univ of California Press. https://www.ucpress.edu/book/9780520262348/life-histories-of-the-dobe-kung

Kahle, D., & Stamey, J. (2017). invgamma: The inverse gamma distribution [Manual]. https://CRAN.R-project.org/package=invgamma

Kay, M. (2020a). Marginal distribution of a single correlation from an LKJ distribution. https://mjskay.github.io/ggdist/reference/lkjcorr_marginal.html

Kay, M. (2020b). tidybayes: Tidy data and ’geoms’ for Bayesian models. http://mjskay.github.io/tidybayes

Kay, M. (2020c). Extracting and visualizing tidy draws from brms models. https://mjskay.github.io/tidybayes/articles/tidy-brms.html

Kelley, K., & Preacher, K. J. (2012). On effect size. Psychological Methods, 17(2), 137. https://doi.org/10.1037/a0028086

Kievit, R., Frankenhuis, W. E., Waldorp, L., & Borsboom, D. (2013). Simpson’s paradox in psychological science: A practical guide. Frontiers in Psychology, 4. https://doi.org/10.3389/fpsyg.2013.00513

Kline, M. A., & Boyd, R. (2010). Population size predicts technological complexity in Oceania. Proceedings of the Royal Society B: Biological Sciences, 277(1693), 2559–2564. https://doi.org/10.1098/rspb.2010.0452

Kruschke, J. K. (2015). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Academic Press. https://sites.google.com/site/doingbayesiandataanalysis/

Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22(1), 79–86. https://doi.org/10.1214/aoms/1177729694

Kurz, A. S. (2020a). Doing Bayesian data analysis in brms and the tidyverse (version 0.3.0). https://bookdown.org/content/3686/

Kurz, A. S. (2020b). Statistical rethinking with brms, ggplot2, and the tidyverse: Second edition (version 0.0.3). https://bookdown.org/content/4857/

Legler, J., & Roback, P. (2019). Broadening your statistical horizons: Generalized linear models and multilevel models. https://bookdown.org/roback/bookdown-bysh/

Matejka, J., & Fitzmaurice, G. (2017). Same stats, different graphs: Generating datasets with varied appearance and identical statistics through simulated annealing. https://www.autodesk.com/research/publications/same-stats-different-graphs

McElreath, R. (2015). Statistical rethinking: A Bayesian course with examples in R and Stan. CRC press. https://xcelab.net/rm/statistical-rethinking/

McElreath, R. (2020a). rethinking R package. https://xcelab.net/rm/software/

McElreath, R. (2020b). Statistical rethinking: A Bayesian course with examples in R and Stan (Second Edition). CRC Press. https://xcelab.net/rm/statistical-rethinking/

McHenry, H. M., & Coffing, K. (2000). Australopithecus to Homo: Transformations in body and mind. Annual Review of Anthropology, 29(1), 125–146. https://doi.org/10.1146/annurev.anthro.29.1.125

Merkle, E. C., & Rosseel, Y. (2018). blavaan: Bayesian structural equation models via parameter expansion. Journal of Statistical Software, 85(4), 1–30. https://doi.org/10.18637/jss.v085.i04

Merkle, E. C., Rosseel, Y., & Goodrich, B. (2020). blavaan: Bayesian latent variable analysis. https://CRAN.R-project.org/package=blavaan

Müller, K., & Wickham, H. (2020). tibble: Simple data frames. https://CRAN.R-project.org/package=tibble

Navarro, D. (2019). Learning statistics with R. https://learningstatisticswithr.com

Navarro, D. J. (2019). Between the devil and the deep blue sea: Tensions between scientific judgement and statistical model selection. Computational Brain & Behavior, 2(1), 28–34. https://doi.org/10.1007/s42113-018-0019-z

Nowosad, J. (2019). rcartocolor: ’CARTOColors’ palettes. https://CRAN.R-project.org/package=rcartocolor

Nunn, N., & Puga, D. (2012). Ruggedness: The blessing of bad geography in Africa. Review of Economics and Statistics, 94(1), 20–36. https://doi.org/10.1162/REST_a_00161

Pedersen, T. L. (2019). patchwork: The composer of plots. https://CRAN.R-project.org/package=patchwork

Peng, R. D. (2019). R programming for data science. https://bookdown.org/rdpeng/rprogdatascience/

Peng, R. D., Kross, S., & Anderson, B. (2017). Mastering software development in {}R{}. https://github.com/rdpeng/RProgDA

Ram, K., & Wickham, H. (2018). wesanderson: A Wes Anderson palette generator [Manual]. https://CRAN.R-project.org/package=wesanderson

R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

Ripley, B. (2019). MASS: Support functions and datasets for venables and ripley’s MASS. https://CRAN.R-project.org/package=MASS

Robert, C., & Casella, G. (2011). A short history of Markov chain Monte Carlo: Subjective recollections from incomplete data. Statistical Science, 26(1), 102–115. https://arxiv.org/pdf/0808.2902.pdf

Robinson, D., & Hayes, A. (2020). broom: Convert statistical analysis objects into tidy tibbles [Manual]. https://CRAN.R-project.org/package=broom

Rudis, B. (2020). hrbrthemes: Additional themes, theme components and utilities for ’ggplot2’ [Manual]. https://CRAN.R-project.org/package=hrbrthemes

Rudis, B., Ross, N., & Garnier, S. (2018). The viridis color palettes. https://cran.r-project.org/package=viridis/vignettes/intro-to-viridis.html

Schloerke, B., Crowley, J., Di Cook, Briatte, F., Marbach, M., Thoen, E., Elberg, A., & Larmarange, J. (2020). GGally: Extension to ’ggplot2’. https://CRAN.R-project.org/package=GGally

Silk, J. B., Brosnan, S. F., Vonk, J., Henrich, J., Povinelli, D. J., Richardson, A. S., Lambeth, S. P., Mascaro, J., & Schapiro, S. J. (2005). Chimpanzees are indifferent to the welfare of unrelated group members. Nature, 437(7063), 1357–1359. https://doi.org/10.1038/nature04243

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22(11), 1359–1366. https://doi.org/10.1177/0956797611417632

Slowikowski, K. (2020). ggrepel: Automatically position non-overlapping text labels with ’ggplot2’. https://CRAN.R-project.org/package=ggrepel

Stan Development Team. (2020a). Stan functions reference. https://mc-stan.org/docs/2_24/functions-reference/index.html

Stan Development Team. (2020b). RStan: The R interface to Stan. https://cran.r-project.org/web/packages/rstan/vignettes/rstan.html

Subramanian, S. V., Kim, R., & Christakis, N. A. (2018). The “average” treatment effect: A construct ripe for retirement. A commentary on Deaton and Cartwright. Social Science & Medicine, 210, 77–82. https://doi.org/10.1016/j.socscimed.2018.04.027

Thoen, E. (2019). dutchmasters [Manual]. https://github.com/EdwinTh/dutchmasters

Tufte, E. R. (2001). The visual display of quantitative information (Second Edition). Graphics Press. https://www.edwardtufte.com/tufte/books_vdqi

UNICEF. (2014). Hidden in plain sight: A statistical analysis of violence against children. https://www.unicef.org/publications/index_74865.html

Urban Institute. (2020). urbnmapr: State and county maps with Alaska and Hawaii. https://github.com/UrbanInstitute/urbnmapr

van Buuren, S. (2018). Flexible imputation of missing data (Second Edition). CRC Press. https://stefvanbuuren.name/fimd/

Van der Lee, R., & Ellemers, N. (2015). Gender contributes to personal research funding success in The Netherlands. Proceedings of the National Academy of Sciences, 112(40), 12349–12353. https://doi.org/10.1073/pnas.1510159112

Vehtari, A., & Gabry, J. (2020). Using the loo package (version \(>\)= 2.0.0). https://cran.r-project.org/web/packages/loo/vignettes/loo2-example.html\#plotting-pareto-k-diagnostics

Vehtari, A., & Gabry, J. (2019). Bayesian stacking and pseudo-BMA weights using the loo package. https://CRAN.R-project.org/package=loo/vignettes/loo2-weights.html

Vehtari, A., Gabry, J., Magnusson, M., Yao, Y., & Gelman, A. (2019). loo: Efficient leave-one-out cross-validation and WAIC for bayesian models. https://CRAN.R-project.org/package=loo

Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27(5), 1413–1432. https://doi.org/10.1007/s11222-016-9696-4

Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P.-C. (2019). Rank-normalization, folding, and localization: An improved \(\widehat{R}\) for assessing convergence of MCMC. arXiv Preprint arXiv:1903.08008. https://arxiv.org/abs/1903.08008?

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (Fourth Edition). Springer. http://www.stats.ox.ac.uk/pub/MASS4

Vermeer, J. (1665). Girl with a pearl earring.

Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1–48. https://www.jstatsoft.org/v36/i03/

Viechtbauer, W. (2020). metafor: Meta-analysis package for R [Manual]. https://CRAN.R-project.org/package=metafor

Volker, B., & Steenbeek, W. (2015). No evidence that gender contributes to personal research funding success in The Netherlands: A reaction to van der Lee and Ellemers. Proceedings of the National Academy of Sciences, 112(51), E7036–E7037. https://doi.org/10.1073/pnas.1519046112

Vonesh, J. R., & Bolker, B. M. (2005). Compensatory larval responses shift trade-offs associated with predator-induced hatching plasticity. Ecology, 86(6), 1580–1591. https://doi.org/10.1890/04-0535

Wasserstein, R. L., & Lazar, N. A. (2016). The ASA statement on p-values: Context, process, and purpose. 70(2), 129–133. https://doi.org/10.1080/00031305.2016.1154108

Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research, 11(116), 3571–3594. http://jmlr.org/papers/v11/watanabe10a.html

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. https://ggplot2-book.org/

Wickham, H. (2019). tidyverse: Easily install and load the ’tidyverse’. https://CRAN.R-project.org/package=tidyverse

Wickham, H. (2020). The tidyverse style guide. https://style.tidyverse.org/

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686

Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., Woo, K., Yutani, H., & Dunnington, D. (2020). ggplot2: Create elegant data visualisations using the grammar of graphics. https://CRAN.R-project.org/package=ggplot2

Wickham, H., François, R., Henry, L., & Müller, K. (2020). dplyr: A grammar of data manipulation. https://CRAN.R-project.org/package=dplyr

Wilke, C. O. (2019). Fundamentals of data visualization. https://clauswilke.com/dataviz/

Williams, D. R., Liu, S., Martin, S. R., & Rast, P. (2019). Bayesian multivariate mixed-effects location scale modeling of longitudinal relations among affective traits, states, and physical activity. https://doi.org/10.31234/osf.io/4kfjp

Williams, D. R., Rast, P., & Bürkner, P.-C. (2018). Bayesian meta-analysis with weakly informative prior distributions. https://doi.org/10.31234/osf.io/7tbrm

Winerman, L. (2017). Trends report: Psychologists embrace open science. Monitor on Psychology, 48(10). https://www.apa.org/monitor/2017/11/trends-open-science

Xie, Y. (2020). bookdown: Authoring books and technical documents with R Markdown. https://CRAN.R-project.org/package=bookdown

Xie, Y., Allaire, J. J., & Grolemund, G. (2020). R markdown: The definitive guide. Chapman and Hall/CRC. https://bookdown.org/yihui/rmarkdown/

Yao, Y., Vehtari, A., Simpson, D., Gelman, A., & others. (2018). Using stacking to average Bayesian predictive distributions (with discussion). Bayesian Analysis, 13(3), 917–1007. https://doi.org/10.1214/17-BA1091

Zotero | Your personal research assistant. (2020). https://www.zotero.org/