Aalen, O. O. (1988). Heterogeneity in survival analysis. Statistics in Medicine, 7(11), 1121–1137.
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48.
Bates, D., Maechler, M., Bolker, B., & Steven Walker. (2022). lme4: Linear mixed-effects models using Eigen’ and S4.
Beck, N. (1999). Modelling space and time: The event history approach. In E. Scarbrough & E. Tanenbaum (Eds.), Research strategies in social science: A guide to new approaches. Oxford University Press.
Beck, Nathaniel, Katz, J. N., & Tucker, R. (1998). Taking time seriously: Time-series-cross-section analysis with a binary dependent variable. American Journal of Political Science, 42(4), 1260–1288.
Brennan, R. L. (2001). Generalizability Theory. Springer-Verlag.
Brilleman, S. (2019). Estimating survival (time-to-event) models with rstanarm.
Brilleman, S. L., Elci, E. M., Novik, J. B., & Wolfe, R. (2020). Bayesian survival analysis using the rstanarm R package.
Brown, D. R., & Gary, L. E. (1985). Predictors of depressive symptoms among unemployed Black adults. Journal of Sociology and Social Welfare, 12, 736.
Bryk, A. S., & Raudenbush, S. W. (1987). Application of hierarchical linear models to assessing change. Psychological Bulletin, 101(1), 147.
Bürkner, P.-C. (2020). Bayesian item response modeling in R with brms and Stan. arXiv:1905.09501 [Stat].
Bürkner, P.-C. (2021a). Estimating non-linear models with brms.
Bürkner, P.-C. (2021b). Handle missing values with brms.
Bürkner, P.-C. (2021c). Parameterization of response distributions in brms.
Bürkner, P.-C. (2022a). Estimating multivariate models with brms.
Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80(1), 1–28.
Bürkner, P.-C. (2018). Advanced Bayesian multilevel modeling with the R package brms. The R Journal, 10(1), 395–411.
Bürkner, P.-C. (2021d). brms reference manual, Version 2.15.0.
Bürkner, P.-C. (2022b). brms: Bayesian regression models using ’Stan.
Bürkner, P.-C., Gabry, J., Kay, M., & Vehtari, A. (2022). posterior: Tools for working with posterior distributions.
Capaldi, D. M., Crosby, L., & Stoolmiller, M. (1996). Predicting the timing of first sexual intercourse for at-risk adolescent males. Child Development, 67(2), 344–359.
Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1).
Chung, Y., Rabe-Hesketh, S., Dorie, V., Gelman, A., & Liu, J. (2013). A nondegenerate penalized likelihood estimator for variance parameters in multilevel models. Psychometrika, 78(4), 685–709.
Cooney, N. L., Kadden, R. M., Litt, M. D., & Getter, H. (1991). Matching alcoholics to coping skills or interactional therapies: Two-year follow-up results. Journal of Consulting and Clinical Psychology, 59(4), 598.
Cox, David R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society: Series B (Methodological), 34(2), 187–202.
Cox, David Roxbee, & Oakes, D. (1984). Analysis of survival data (Vol. 21). CRC Press.
Cranford, J. A., Shrout, P. E., Iida, M., Rafaeli, E., Yip, T., & Bolger, N. (2006). A procedure for evaluating sensitivity to within-person change: Can mood measures in diary studies detect change reliably? Personality and Social Psychology Bulletin, 32(7), 917–929.
Cronbach, L. J., Gleser, G. C., Nanda, H., & Rajaratnam, N. (1972). The dependability of behavioral measurements: Theory of generalizability for scores and profiles. John Wiley & Sons.
Diekmann, A., Jungbauer-Gans, M., Krassnig, H., & Lorenz, S. (1996). Social status and aggression: A field study analyzed by survival analysis. The Journal of Social Psychology, 136(6), 761–768.
Enders, C. K. (2010). Applied missing data analysis. Guilford Press.
Flinn, C. J., & Heckman, J. J. (1982). New methods for analyzing individual event histories. Sociological Methodology, 13, 99–140.
Frank, A. R., & Keith, T. Z. (1984). Academic abilities of persons entering and remaining in special education. Exceptional Children, 51(1), 76–77.
Gabry, J. (2020). loo reference manual, Version 2.4.1.
Gabry, J., & Mahr, T. (2022). bayesplot: Plotting for Bayesian models.
Gabry, J., & Modrák, M. (2020). Visual MCMC diagnostics using the bayesplot package.
Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A. (2019). Visualization in Bayesian workflow. Journal of the Royal Statistical Society: Series A (Statistics in Society), 182(2), 389–402.
Gamse, B. C., & Conger, D. (1997). An evaluation of the Spencer post-doctoral dissertation program. Abt Associates.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (Third Edition). CRC press.
Gelman, A., Goodrich, B., Gabry, J., & Vehtari, A. (2019). R-squared for Bayesian regression models. The American Statistician, 73(3), 307–309.
Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical models. Cambridge University Press.
Gelman, A., Hill, J., & Vehtari, A. (2020). Regression and other stories. Cambridge University Press.
Gilks, W. R., Richardson, S., & Spiegelhalter, D. (1995). Markov chain Monte Carlo in practice. Chapman and Hall/CRC.
Ginexi, E. M., Howe, G. W., & Caplan, R. D. (2000). Depression and control beliefs in relation to reemployment: What are the directions of effect? Journal of Occupational Health Psychology, 5(3), 323–336.
Graham, S. E. (1997). The exodus from mathematics: When and why? [PhD thesis]. Harvard Graduate School of Education.
Greenwood, M. (1926). The natural duration of cancer. Reports on Public Health and Medical Subjects, 33, 1–26.
Head, R., & Pike, D. (1975). A review of response surface methodology from a biometric point of view. Biometrics, 31, 803–851.
Heckman, J., & Singer, B. S. (Eds.). (1984). Longitudinal analysis of labor market data. Cambridge University Press.
Hu, X. J., & Lawless, J. F. (1996). Estimation from truncated lifetime data with supplementary information on covariates and censoring times. Biometrika, 83(4), 747–761.
Jaeger, B. C., Edwards, L. J., Das, K., & Sen, P. K. (2017). An R2 statistic for fixed effects in the generalized linear mixed model. Journal of Applied Statistics, 44(6), 1086–1105.
Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53(282), 457–481.
Kay, M. (2021). ggdist: Visualizations of distributions and uncertainty [Manual].
Kay, M. (2023). tidybayes: Tidy data and ’geoms’ for Bayesian models.
Keiley, Margaret Kraatz, Bates, J. E., Dodge, K. A., & Pettit, G. S. (2000). A cross-domain growth analysis: Externalizing and internalizing behaviors during 8 years of childhood. Journal of Abnormal Child Psychology, 28(2), 161–179.
Keiley, M. K., & Martin, N. C. (2002). Child abuse, neglect, and juvenile delinquency: How “new” statistical approaches can inform our understanding of “old” questions reanalysis of Widom, 1989 [Manuscript Submitted for Publication].
Kreft, I. G. G., & de Leeuw, J. (1990). Comparing four different statistical packages for hierarchical linear regression: GENMOD, HLM, ML2, and VARCL. CSE Dissemination Office, UCLA Graduate School of Education, 405 Hilgard Avenue, Los Angeles, CA 90024-1521.
Kreft, I. G., & de Leeuw, J. (1998). Introducing multilevel modeling. SAGE Publications, Inc.
Kruschke, J. K. (2015). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Academic Press.
Kruschke, J. K., & Liddell, T. M. (2018). The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin & Review, 25(1), 178–206.
Kuhn, M., Jackson, S., & Cimentada, J. (2020). corrr: Correlations in R [Manual].
Kurz, A. S. (2021). Statistical rethinking with brms, ggplot2, and the tidyverse: Second Edition (version 0.2.0).
Kurz, A. S. (2020). Statistical rethinking with brms, ggplot2, and the tidyverse (version 1.2.0).
Lambert, B. (2018). A student’s guide to Bayesian statistics. SAGE Publications, Inc.
Lawless, J. F. (1982). Statistical models and methods for lifetime data. John Wiley & Sons.
Li, H., & Lahiri, P. (2010). An adjusted maximum likelihood method for solving small area estimation problems. Journal of Multivariate Analysis, 101(4), 882–892.
Little, R. J. (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association, 90(431), 1112–1121.
Little, R. J. A., & Rubin, D., B. (1987). Statistical analysis with missing data. Wiley.
Little, R. J., & Rubin, D. B. (2019). Statistical analysis with missing data (third, Vol. 793). John Wiley & Sons.
LoPilato, A. C., Carter, N. T., & Wang, M. (2015). Updating generalizability theory in management research: Bayesian estimation of variance components. Journal of Management, 41(2), 692–717.
Mallinckrod, C. H., Lane, P. W., Schnell, D., Peng, Y., & Mancuso, J. P. (2008). Recommendations for the primary analysis of continuous endpoints in longitudinal clinical trials. Drug Information Journal, 42(4), 303–319.
Mare, R. D. (1994). Discrete-time bivariate hazards with unobserved heterogeneity: A partially observed contingency table approach. Sociological Methodology, 341–383.
McElreath, R. (2020a). Statistical rethinking: A Bayesian course with examples in R and Stan (Second Edition). CRC Press.
McElreath, R. (2015). Statistical rethinking: A Bayesian course with examples in R and Stan. CRC press.
McElreath, R. (2020b). rethinking R package.
McNeish, D., Stapleton, L. M., & Silverman, R. D. (2017). On the unnecessary ubiquity of hierarchical linear modeling. Psychological Methods, 22(1), 114.
Miller, R. G. (1981). Survival analysis. John Wiley & Sons.
Morris, C., & Tang, R. (2011). Estimating random effects via adjustment for density maximization. Statistical Science, 26(2), 271–287.
Newsom, J. T. (2015). Longitudinal structural equation modeling: A comprehensive introduction. Routledge.
Nezlek, J. B. (2007). A multilevel framework for understanding relationships among traits, states, situations and behaviours. European Journal of Personality, 21(6), 789–810.
Nosek, B. A., Ebersole, C. R., DeHaven, A. C., & Mellor, D. T. (2018). The preregistration revolution. Proceedings of the National Academy of Sciences, 115(11), 2600–2606.
Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal Inference in Statistics - A Primer (1st Edition). Wiley.
Pedersen, T. L. (2022). patchwork: The composer of plots.
Peng, R. D. (2019). R programming for data science.
Pinheiro, J., Bates, D., & R-core. (2021). nlme: Linear and nonlinear mixed effects models [Manual].
Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Proceedings of the 3rd International Workshop on Distributed Statistical Computing, 124, 1–10.
Plummer, M. (2012). JAGS Version 3.3.0 user manual.,%20manuals/jags_user_manual.pdf
R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Radloff, L. S. (1977). The CES-D Scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1(3), 385–401.
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods (Second Edition). SAGE Publications, Inc.
Raudenbush, S. W., & Chan, W.-S. (2016). Growth curve analysis in accelerated longitudinal designs. Journal of Research in Crime and Delinquency, 29(4), 387–411.
Revelle, W. (2022). psych: Procedures for psychological, psychometric, and personality research.
Rights, Jason D., & Cole, D. A. (2018). Effect size measures for multilevel models in clinical child and adolescent research: New R-squared methods and recommendations. Journal of Clinical Child & Adolescent Psychology, 47(6), 863–873.
Rights, Jason D., & Sterba, S. K. (2020). New recommendations on the use of R-squared differences in multilevel model comparisons. Multivariate Behavioral Research, 55(4), 568–599.
Ripley, B. (2022). MASS: Support functions and datasets for venables and Ripley’s MASS.
Robinson, D., Hayes, A., & Couch, S. (2022). broom: Convert statistical objects into tidy tibbles [Manual].
Rogosa, D. R., & Willett, J. B. (1985). Understanding correlates of change by modeling individual differences in growth. Psychometrika, 50(2), 203–228.
Rogosa, D., Brandt, D., & Zimowski, M. (1982). A growth curve approach to the measurement of change. Psychological Bulletin, 92(3), 726–748.
Rupert G. Miller, Jr. (1997). Beyond ANOVA: Basics of applied statistics. Chapman and Hall/CRC.
Sandberg, D. E., Meyer-Bahlburg, H. F. L., & Yager, T. J. (1991). The Child Behavior Checklist nonclinical standardization samples: Should they be utilized as norms? Journal of the American Academy of Child & Adolescent Psychiatry, 30(1), 124–134.
Schafer, J. L. (1997). Analysis of incomplete multivariate data. CRC press.
Scheike, T. H., & Jensen, T. K. (1997). A discrete survival model with random effects: An application to time to pregnancy. Biometrics, 318–329.
Schloerke, B., Crowley, J., Di Cook, Briatte, F., Marbach, M., Thoen, E., Elberg, A., & Larmarange, J. (2021). GGally: Extension to ’ggplot2’.
Shrout, P. E., & Lane, S. P. (2012). Psychometrics. In M. R. Mehl & T. S. Conner (Eds.), Handbook of research methods for studying daily life (pp. 302–320). The Guilford Press.
Singer, J. D. (1992). Are special educators’ career paths special? Results from a 13-year longitudinal study. Exceptional Children, 59(3), 262–279.
Singer, J. D., Davidson, S. M., Graham, S., & Davidson, H. S. (1998). Physician retention in community and migrant health centers: Who stays and for how long? Medical Care, 1198–1213.
Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis: Modeling change and event occurrence. Oxford University Press, USA.
Snijders, T. A. B., & Bosker, R. J. (1994). Modeled variance in two-level models. Sociological Methods & Research, 22(3), 342–363.
Sorenson, S. B., Rutter, C. M., & Aneshensel, C. S. (1991). Depression in the community: An investigation into age of onset. Journal of Consulting and Clinical Psychology, 59(4), 541.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Linde, A. V. D. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4), 583–639.
Stan Development Team. (2021a). Stan reference manual, Version 2.27.
Stan Development Team. (2021b). Stan user’s guide, Version 2.26.
Steegen, S., Tuerlinckx, F., Gelman, A., & Vanpaemel, W. (2016). Increasing transparency through a multiverse analysis. Perspectives on Psychological Science, 11(5), 702–712.
Sueyoshi, G. T. (1995). A class of binary response models for grouped duration data. Journal of Applied Econometrics, 10(4), 411–431.
Therneau, Terry M. (2021a). A package for survival analysis in R.
Therneau, Terry M. (2021b). survival reference manual, Version 3.2-10.
Therneau, Terry M. (2021c). survival: Survival analysis [Manual].
Therneau, Terry M., & Grambsch, P. M. (2000). Modeling survival data: Extending the Cox model. Springer.
Tomarken, A., Shelton, R., Elkins, L., & Anderson, T. (1997). Sleep deprivation and anti-depressant medication: Unique effects on positive and negative affect. American Psychological Society Meeting, Washington, DC.
Turnbull, B. W. (1974). Nonparametric estimation of a survivorship function with doubly censored data. Journal of the American Statistical Association, 69(345), 169–173.
Turnbull, B. W. (1976). The empirical distribution function with arbitrarily grouped, censored and truncated data. Journal of the Royal Statistical Society: Series B (Methodological), 38(3), 290–295.
van Buuren, S. (2018). Flexible imputation of missing data (Second Edition). CRC Press.
Vaupel, J. W., Manton, K. G., & Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16(3), 439–454.
Vaupel, J. W., & Yashin, A. I. (1985). Heterogeneity’s ruses: Some surprising effects of selection on population dynamics. The American Statistician, 39(3), 176–185.
Vehtari, A., & Gabry, J. (2020). Using the loo package (version \(>\)= 2.0.0).
Vehtari, A., Gabry, J., Magnusson, M., Yao, Y., & Gelman, A. (2022). loo: Efficient leave-one-out cross-validation and WAIC for bayesian models.
Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27(5), 1413–1432.
Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P.-C. (2019). Rank-normalization, folding, and localization: An improved \(\widehat{R}\) for assessing convergence of MCMC. arXiv Preprint arXiv:1903.08008.
Vehtari, A., Simpson, D., Gelman, A., Yao, Y., & Gabry, J. (2021). Pareto smoothed importance sampling.
Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (Fourth Edition). Springer.
Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research, 11(116), 3571–3594.
Wheaton, B., Roszell, P., & Hall, K. (1997). The impact of twenty childhood and adult traumatic stressors on the risk of psychiatric disorder. In I. H. Gotlib & B. Wheaton (Eds.), Stress and adversity over the life course: Trajectories and turning points (pp. 50–72). Cambridge University Press.
Wickham, H. (2022). tidyverse: Easily install and load the ’tidyverse’.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686.
Willett, J. B. (1989). Some results on reliability for the longitudinal measurement of change: Implications for the design of studies of individual growth. Educational and Psychological Measurement, 49(3), 587–602.
Willett, J. B. (1988). Chapter 9: Questions and answers in the measurement of change. Review of Research in Education, 15, 345–422.
Williams, D. R., Rouder, J., & Rast, P. (2019). Beneath the surface: Unearthing within-Person variability and mean relations with Bayesian mixed models.
Yao, Y., Vehtari, A., Simpson, D., & Gelman, A. (2018). Using stacking to average Bayesian predictive distributions (with discussion). Bayesian Analysis, 13(3), 917–1007.
Zorn, C. J., & Van Winkle, S. R. (2000). A competing risks model of Supreme Court vacancies, 1789. Political Behavior, 22(2), 145–166.