5 Uygulama - 1

Bu bölümde iki grubun ortalama farkına dayalı etki büyüklüğü değerleri kullanılarak meta analiz çalışması yapılmıştır. Bu çalışmada Hedge g, MD (standartlaştırılmamış ortalama farkı ile etki büyüklüğü), Cohen’ s d ve standart hatalar hesaplanmıştır.

library(readxl)

# Excel dosyasını oku
data <- read_excel("s176.xlsx")

# Veri setini kontrol et
head(data)
## # A tibble: 6 × 6
##   mean_exp sd_exp n_exp mean_control sd_control n_control
##      <dbl>  <dbl> <dbl>        <dbl>      <dbl>     <dbl>
## 1    70.7   15.5     27        56.3       18.6         73
## 2    59.4    9.8     15        41.7       90.4         45
## 3    33.7   25.2     31        26.6       20.3         42
## 4     3.69   2.83    29         3.07       2.2         30
## 5     5.17   2.85    30         3.07       2.2         30
## 6     6.04   2.83    18         6.06       2.76        21
# Deney ve kontrol gruplarına ait veriler
mean_exp <- data$mean_exp  # Deney grubunun aritmetik ortalaması
mean_control <- data$mean_control  # Kontrol grubunun aritmetik ortalaması
sd_exp <- data$sd_exp  # Deney grubunun standart sapması
sd_control <- data$sd_control  # Kontrol grubunun standart sapması
n_exp <- data$n_exp  # Deney grubunun örneklem büyüklüğü
n_control <- data$n_control  # Kontrol grubunun örneklem büyüklüğü

# 1. Birleşik Standart Sapma (Pooled Standard Deviation)
pooled_sd <- sqrt(((n_exp - 1) * sd_exp^2 + (n_control - 1) * sd_control^2) / (n_exp + n_control - 2))

# 2. Standartlaştırılmış Ortalama Fark (Cohen's d)
d <- (mean_exp - mean_control) / pooled_sd

# 3. Cohen's d için Standart Hata (SE_d)
SE_d <- sqrt((n_exp + n_control) / (n_exp * n_control) + (d^2 / (2 * (n_exp + n_control))))

# 4. Hedges's g hesaplama
g <- d * (1 - (3 / (4 * (n_exp + n_control - 2) - 1)))

# 5. Hedges's g için Standart Hata (SE_g) fonksiyonu
SE_g <- function(SE_d, n_exp, n_control) {
  SE_g <- SE_d * (1 - (3 / (4 * (n_exp + n_control) - 9)))
  return(SE_g)
}
SE_g_values <- SE_g(SE_d, n_exp, n_control)

# 6. Standartlaştırılmamış Ortalama Farkı (MD)
MD <- mean_exp - mean_control

# 7. MD'nin Standart Hatası (SE_MD)
SE_MD <- sqrt((sd_exp^2 / n_exp) + (sd_control^2 / n_control))

# Sonuçları yazdır
cat("Cohen's d değerleri: \n")
## Cohen's d değerleri:
print(d)
##  [1]  0.810350527  0.224885979  0.316112340  0.245140635  0.824878355
##  [6] -0.007162349  1.450999155  1.644585669  0.930429782  1.264409058
## [11]  0.759959555 -1.973492204  0.145402658 -0.009238950  0.472986506
## [16]  0.577909478 -0.052614517
cat("Cohen's d için Standart Hata değerleri: \n")
## Cohen's d için Standart Hata değerleri:
print(SE_d)
##  [1] 0.2324199 0.2988484 0.2382268 0.2613912 0.2689551 0.3212091 0.2497730
##  [8] 0.2701259 0.3843978 0.3999735 0.2989136 0.4608740 0.1533578 0.5000027
## [15] 0.2058997 0.2112821 0.1550166
cat("Hedges's g değerleri: \n")
## Hedges's g değerleri:
print(g)
##  [1]  0.804133004  0.221965382  0.312761326  0.241900890  0.814165649
##  [6] -0.007016178  1.437180115  1.627394878  0.905283031  1.230235840
## [11]  0.747501202 -1.916011848  0.144756424 -0.008735008  0.469242550
## [16]  0.573185422 -0.052374997
cat("Hedges's g için Standart Hata değerleri: \n")
## Hedges's g için Standart Hata değerleri:
print(SE_g_values)
##  [1] 0.2306366 0.2949672 0.2357015 0.2579367 0.2654622 0.3146538 0.2473942
##  [8] 0.2673023 0.3740087 0.3891635 0.2940134 0.4474505 0.1526762 0.4727298
## [15] 0.2042699 0.2095550 0.1543109
cat("Standartlaştırılmamış Ortalama Farkı (MD) değerleri: \n")
## Standartlaştırılmamış Ortalama Farkı (MD) değerleri:
print(MD)
##  [1]  14.44  17.74   7.11   0.62   2.10  -0.02  18.97  23.06   1.85   1.95
## [11]   2.83 -20.72   3.75  -0.40   5.37  11.47  -0.53
cat("MD için Standart Hata değerleri (SE_MD): \n")
## MD için Standart Hata değerleri (SE_MD):
print(SE_MD)
##  [1]  3.6946066 13.7115361  5.5007047  0.6614396  0.6573305  0.8987112
##  [7]  2.9205963  3.4603797  0.7260349  0.5631400  1.0749922  3.9683075
## [13]  3.9399131 21.6474805  2.3003483  4.0235682  1.5589856
# Çalışma bazında sonuçları görmek isterseniz:
results <- data.frame(
  study = 1:nrow(data),
  mean_exp = mean_exp,
  mean_control = mean_control,
  pooled_sd = pooled_sd,
  d = d,
  SE_d = SE_d,
  g = g,
  SE_g = SE_g_values,
  MD = MD,
  SE_MD = SE_MD
)

# Sonuçları görüntüle
print(results)
##    study mean_exp mean_control pooled_sd            d      SE_d            g
## 1      1    70.71        56.27 17.819449  0.810350527 0.2324199  0.804133004
## 2      2    59.40        41.66 78.884420  0.224885979 0.2988484  0.221965382
## 3      3    33.71        26.60 22.492004  0.316112340 0.2382268  0.312761326
## 4      4     3.69         3.07  2.529160  0.245140635 0.2613912  0.241900890
## 5      5     5.17         3.07  2.545830  0.824878355 0.2689551  0.814165649
## 6      6     6.04         6.06  2.792380 -0.007162349 0.3212091 -0.007016178
## 7      7    94.58        75.61 13.073750  1.450999155 0.2497730  1.437180115
## 8      8    98.67        75.61 14.021769  1.644585669 0.2701259  1.627394878
## 9      9     7.45         5.60  1.988328  0.930429782 0.3843978  0.905283031
## 10    10     4.40         2.45  1.542222  1.264409058 0.3999735  1.230235840
## 11    11    19.12        16.29  3.723882  0.759959555 0.2989136  0.747501202
## 12    12    45.71        66.43 10.499155 -1.973492204 0.4608740 -1.916011848
## 13    13    50.50        46.75 25.790450  0.145402658 0.1533578  0.144756424
## 14    14    52.88        53.28 43.294961 -0.009238950 0.5000027 -0.008735008
## 15    15    73.43        68.06 11.353389  0.472986506 0.2058997  0.469242550
## 16    16    55.91        44.44 19.847399  0.577909478 0.2112821  0.573185422
## 17    17    20.94        21.47 10.073266 -0.052614517 0.1550166 -0.052374997
##         SE_g     MD      SE_MD
## 1  0.2306366  14.44  3.6946066
## 2  0.2949672  17.74 13.7115361
## 3  0.2357015   7.11  5.5007047
## 4  0.2579367   0.62  0.6614396
## 5  0.2654622   2.10  0.6573305
## 6  0.3146538  -0.02  0.8987112
## 7  0.2473942  18.97  2.9205963
## 8  0.2673023  23.06  3.4603797
## 9  0.3740087   1.85  0.7260349
## 10 0.3891635   1.95  0.5631400
## 11 0.2940134   2.83  1.0749922
## 12 0.4474505 -20.72  3.9683075
## 13 0.1526762   3.75  3.9399131
## 14 0.4727298  -0.40 21.6474805
## 15 0.2042699   5.37  2.3003483
## 16 0.2095550  11.47  4.0235682
## 17 0.1543109  -0.53  1.5589856

Bu kısımda Hedge’s g, standart hata, varyans değeri, güven aralığı, z değeri ve p değeri hesaplanmıştır. Bu değerler orman garfiği kullanılarak gösterilmiştir.

library(readxl)
library(ggplot2)

# Excel dosyasını oku
data <- read_excel("s176.xlsx")

# Veri setini kontrol et
head(data)
## # A tibble: 6 × 6
##   mean_exp sd_exp n_exp mean_control sd_control n_control
##      <dbl>  <dbl> <dbl>        <dbl>      <dbl>     <dbl>
## 1    70.7   15.5     27        56.3       18.6         73
## 2    59.4    9.8     15        41.7       90.4         45
## 3    33.7   25.2     31        26.6       20.3         42
## 4     3.69   2.83    29         3.07       2.2         30
## 5     5.17   2.85    30         3.07       2.2         30
## 6     6.04   2.83    18         6.06       2.76        21
# Deney ve kontrol gruplarına ait veriler
mean_exp <- data$mean_exp  # Deney grubunun aritmetik ortalaması
mean_control <- data$mean_control  # Kontrol grubunun aritmetik ortalaması
sd_exp <- data$sd_exp  # Deney grubunun standart sapması
sd_control <- data$sd_control  # Kontrol grubunun standart sapması
n_exp <- data$n_exp  # Deney grubunun örneklem büyüklüğü
n_control <- data$n_control  # Kontrol grubunun örneklem büyüklüğü

# 1. Birleşik Standart Sapma (Pooled Standard Deviation)
pooled_sd <- sqrt(((n_exp - 1) * sd_exp^2 + (n_control - 1) * sd_control^2) / (n_exp + n_control - 2))

# 2. Hedges's g hesaplama
g <- (mean_exp - mean_control) / pooled_sd * (1 - (3 / (4 * (n_exp + n_control - 2) - 1)))

# 3. Hedges's g için Standart Hata (SE_g)
SE_g <- sqrt((n_exp + n_control) / (n_exp * n_control) + (g^2 / (2 * (n_exp + n_control)))) * (1 - (3 / (4 * (n_exp + n_control) - 9)))

# 4. Varyans (Variance of g)
var_g <- SE_g^2

# 5. Güven Aralığı (95% CI)
z_critical <- 1.96  # 95% güven aralığı için
lower_ci <- g - z_critical * SE_g
upper_ci <- g + z_critical * SE_g

# 6. Z-değeri (Z-value)
z_value <- g / SE_g

# 7. P-değeri (P-value)
p_value <- 2 * (1 - pnorm(abs(z_value)))

# Sonuçları yazdır
cat("Hedges's g değerleri: \n")
## Hedges's g değerleri:
print(g)
##  [1]  0.804133004  0.221965382  0.312761326  0.241900890  0.814165649
##  [6] -0.007016178  1.437180115  1.627394878  0.905283031  1.230235840
## [11]  0.747501202 -1.916011848  0.144756424 -0.008735008  0.469242550
## [16]  0.573185422 -0.052374997
cat("Hedges's g için Standart Hata (SE_g) değerleri: \n")
## Hedges's g için Standart Hata (SE_g) değerleri:
print(SE_g)
##  [1] 0.2305295 0.2949492 0.2356715 0.2579115 0.2651936 0.3146537 0.2469052
##  [8] 0.2666053 0.3730337 0.3874314 0.2936914 0.4432254 0.1526744 0.4727295
## [15] 0.2042260 0.2094871 0.1543107
cat("Hedges's g Varyansı (var_g): \n")
## Hedges's g Varyansı (var_g):
print(var_g)
##  [1] 0.05314383 0.08699506 0.05554104 0.06651832 0.07032764 0.09900697
##  [7] 0.06096218 0.07107838 0.13915413 0.15010312 0.08625462 0.19644879
## [13] 0.02330948 0.22347321 0.04170828 0.04388486 0.02381179
cat("Hedges's g için Güven Aralıkları (95% CI): \n")
## Hedges's g için Güven Aralıkları (95% CI):
print(data.frame(Lower = lower_ci, Upper = upper_ci))
##          Lower      Upper
## 1   0.35229528  1.2559707
## 2  -0.35613513  0.8000659
## 3  -0.14915477  0.7746774
## 4  -0.26360556  0.7474073
## 5   0.29438620  1.3339451
## 6  -0.62373750  0.6097051
## 7   0.95324593  1.9211143
## 8   1.10484852  2.1499412
## 9   0.17413700  1.6364291
## 10  0.47087022  1.9896015
## 11  0.17186613  1.3231363
## 12 -2.78473372 -1.0472900
## 13 -0.15448542  0.4439983
## 14 -0.93528488  0.9178149
## 15  0.06895951  0.8695256
## 16  0.16259063  0.9837802
## 17 -0.35482395  0.2500740
cat("Z-değerleri (z-value): \n")
## Z-değerleri (z-value):
print(z_value)
##  [1]  3.48820075  0.75255451  1.32710725  0.93792224  3.07008034 -0.02229809
##  [7]  5.82077712  6.10413590  2.42681307  3.17536398  2.54519301 -4.32288326
## [13]  0.94813810 -0.01847781  2.29766265  2.73613659 -0.33941263
cat("P-değerleri (p-value): \n")
## P-değerleri (p-value):
print(p_value)
##  [1] 4.862828e-04 4.517177e-01 1.844732e-01 3.482844e-01 2.140012e-03
##  [6] 9.822102e-01 5.857464e-09 1.033583e-09 1.523210e-02 1.496487e-03
## [11] 1.092174e-02 1.540032e-05 3.430592e-01 9.852577e-01 2.158100e-02
## [16] 6.216522e-03 7.342989e-01
# Çalışma bazında sonuçları görmek isterseniz:
results <- data.frame(
  study = 1:nrow(data),
  mean_exp = mean_exp,
  mean_control = mean_control,
  pooled_sd = pooled_sd,
  g = g,
  SE_g = SE_g,
  var_g = var_g,
  lower_ci = lower_ci,
  upper_ci = upper_ci,
  z_value = z_value,
  p_value = p_value
)

# Sonuçları görüntüle
print(results)
##    study mean_exp mean_control pooled_sd            g      SE_g      var_g
## 1      1    70.71        56.27 17.819449  0.804133004 0.2305295 0.05314383
## 2      2    59.40        41.66 78.884420  0.221965382 0.2949492 0.08699506
## 3      3    33.71        26.60 22.492004  0.312761326 0.2356715 0.05554104
## 4      4     3.69         3.07  2.529160  0.241900890 0.2579115 0.06651832
## 5      5     5.17         3.07  2.545830  0.814165649 0.2651936 0.07032764
## 6      6     6.04         6.06  2.792380 -0.007016178 0.3146537 0.09900697
## 7      7    94.58        75.61 13.073750  1.437180115 0.2469052 0.06096218
## 8      8    98.67        75.61 14.021769  1.627394878 0.2666053 0.07107838
## 9      9     7.45         5.60  1.988328  0.905283031 0.3730337 0.13915413
## 10    10     4.40         2.45  1.542222  1.230235840 0.3874314 0.15010312
## 11    11    19.12        16.29  3.723882  0.747501202 0.2936914 0.08625462
## 12    12    45.71        66.43 10.499155 -1.916011848 0.4432254 0.19644879
## 13    13    50.50        46.75 25.790450  0.144756424 0.1526744 0.02330948
## 14    14    52.88        53.28 43.294961 -0.008735008 0.4727295 0.22347321
## 15    15    73.43        68.06 11.353389  0.469242550 0.2042260 0.04170828
## 16    16    55.91        44.44 19.847399  0.573185422 0.2094871 0.04388486
## 17    17    20.94        21.47 10.073266 -0.052374997 0.1543107 0.02381179
##       lower_ci   upper_ci     z_value      p_value
## 1   0.35229528  1.2559707  3.48820075 4.862828e-04
## 2  -0.35613513  0.8000659  0.75255451 4.517177e-01
## 3  -0.14915477  0.7746774  1.32710725 1.844732e-01
## 4  -0.26360556  0.7474073  0.93792224 3.482844e-01
## 5   0.29438620  1.3339451  3.07008034 2.140012e-03
## 6  -0.62373750  0.6097051 -0.02229809 9.822102e-01
## 7   0.95324593  1.9211143  5.82077712 5.857464e-09
## 8   1.10484852  2.1499412  6.10413590 1.033583e-09
## 9   0.17413700  1.6364291  2.42681307 1.523210e-02
## 10  0.47087022  1.9896015  3.17536398 1.496487e-03
## 11  0.17186613  1.3231363  2.54519301 1.092174e-02
## 12 -2.78473372 -1.0472900 -4.32288326 1.540032e-05
## 13 -0.15448542  0.4439983  0.94813810 3.430592e-01
## 14 -0.93528488  0.9178149 -0.01847781 9.852577e-01
## 15  0.06895951  0.8695256  2.29766265 2.158100e-02
## 16  0.16259063  0.9837802  2.73613659 6.216522e-03
## 17 -0.35482395  0.2500740 -0.33941263 7.342989e-01
forest_plot <- ggplot(results, aes(x = g, y = study)) +
  geom_point(shape = 15, size = 3, color = "blue") +  # Hedges's g noktaları
  geom_errorbarh(aes(xmin = lower_ci, xmax = upper_ci), height = 0.2, color = "red") +  # %95 CI yatay hata çubukları
  geom_vline(xintercept = 0, linetype = "dashed", color = "black") +  # 0 doğrusu
  theme_minimal() +
  labs(
    title = "Hedges's g ve %95 Güven Aralığı Orman Grafiği",
    x = "Hedges's g",
    y = "Çalışma"
  ) +
  theme(
    axis.title = element_text(size = 12),
    axis.text = element_text(size = 10)
  ) +
  scale_y_continuous(
    breaks = results$study,
    labels = results$study
  )

# Grafiği göster
print(forest_plot)

Heterojenlik testi

library(readxl)


# Excel dosyasını oku
data <- read_excel("s176.xlsx")
mean_exp <- data$mean_exp  # Deney grubunun aritmetik ortalaması
mean_control <- data$mean_control  # Kontrol grubunun aritmetik ortalaması
sd_exp <- data$sd_exp  # Deney grubunun standart sapması
sd_control <- data$sd_control  # Kontrol grubunun standart sapması
n_exp <- data$n_exp  # Deney grubunun örneklem büyüklüğü
n_control <- data$n_control  # Kontrol grubunun örneklem büyüklüğü
pooled_sd <- sqrt(((n_exp - 1) * sd_exp^2 + (n_control - 1) * sd_control^2) / (n_exp + n_control - 2))
pooled_sd
##  [1] 17.819449 78.884420 22.492004  2.529160  2.545830  2.792380 13.073750
##  [8] 14.021769  1.988328  1.542222  3.723882 10.499155 25.790450 43.294961
## [15] 11.353389 19.847399 10.073266
# 2. Hedges's g hesaplama
g <- (mean_exp - mean_control) / pooled_sd * (1 - (3 / (4 * (n_exp + n_control - 2) - 1)))
g
##  [1]  0.804133004  0.221965382  0.312761326  0.241900890  0.814165649
##  [6] -0.007016178  1.437180115  1.627394878  0.905283031  1.230235840
## [11]  0.747501202 -1.916011848  0.144756424 -0.008735008  0.469242550
## [16]  0.573185422 -0.052374997
# 3. Hedges's g için Standart Hata (SE_g)
SE_g <- sqrt((n_exp + n_control) / (n_exp * n_control) + (g^2 / (2 * (n_exp + n_control)))) * (1 - (3 / (4 * (n_exp + n_control) - 9)))
SE_g
##  [1] 0.2305295 0.2949492 0.2356715 0.2579115 0.2651936 0.3146537 0.2469052
##  [8] 0.2666053 0.3730337 0.3874314 0.2936914 0.4432254 0.1526744 0.4727295
## [15] 0.2042260 0.2094871 0.1543107
# 4. Varyans (Variance of g)
var_g <- SE_g^2
var_g
##  [1] 0.05314383 0.08699506 0.05554104 0.06651832 0.07032764 0.09900697
##  [7] 0.06096218 0.07107838 0.13915413 0.15010312 0.08625462 0.19644879
## [13] 0.02330948 0.22347321 0.04170828 0.04388486 0.02381179
# 5. Güven Aralığı (95% CI)
z_critical <- 1.96  # 95% güven aralığı için
lower_ci <- g - z_critical * SE_g
upper_ci <- g + z_critical * SE_g
lower_ci
##  [1]  0.35229528 -0.35613513 -0.14915477 -0.26360556  0.29438620 -0.62373750
##  [7]  0.95324593  1.10484852  0.17413700  0.47087022  0.17186613 -2.78473372
## [13] -0.15448542 -0.93528488  0.06895951  0.16259063 -0.35482395
upper_ci
##  [1]  1.2559707  0.8000659  0.7746774  0.7474073  1.3339451  0.6097051
##  [7]  1.9211143  2.1499412  1.6364291  1.9896015  1.3231363 -1.0472900
## [13]  0.4439983  0.9178149  0.8695256  0.9837802  0.2500740
# 6. Z-değeri (Z-value)
z_value <- g / SE_g
z_value
##  [1]  3.48820075  0.75255451  1.32710725  0.93792224  3.07008034 -0.02229809
##  [7]  5.82077712  6.10413590  2.42681307  3.17536398  2.54519301 -4.32288326
## [13]  0.94813810 -0.01847781  2.29766265  2.73613659 -0.33941263
# 7. P-değeri (P-value)
p_value <- 2 * (1 - pnorm(abs(z_value)))
p_value
##  [1] 4.862828e-04 4.517177e-01 1.844732e-01 3.482844e-01 2.140012e-03
##  [6] 9.822102e-01 5.857464e-09 1.033583e-09 1.523210e-02 1.496487e-03
## [11] 1.092174e-02 1.540032e-05 3.430592e-01 9.852577e-01 2.158100e-02
## [16] 6.216522e-03 7.342989e-01
fixed_model <- rma(yi = g, vi = SE_g^2, data = data, method = "FE")
random_model <- rma(yi = g, vi = SE_g^2, data = data, method = "REML")
# Sabit model ve rasgele model heterojenlik test sonuçları
cat("\n--- Sabit Model Sonuçları ---\n")
## 
## --- Sabit Model Sonuçları ---
cat("Q İstatistiği: ", fixed_model$QE, "\n")
## Q İstatistiği:  94.3856
cat("I^2: ", fixed_model$I2, "\n")
## I^2:  83.04826
cat("Tau Kare: ", fixed_model$tau2, "\n")
## Tau Kare:  0
cat("\n--- Rasgele Model Sonuçları ---\n")
## 
## --- Rasgele Model Sonuçları ---
cat("Q İstatistiği: ", random_model$QE, "\n")
## Q İstatistiği:  94.3856
cat("I^2: ", random_model$I2, "\n")
## I^2:  87.44238
cat("Tau Kare: ", random_model$tau2, "\n")
## Tau Kare:  0.4268754
# Sabit model için Cochran's Q hesaplama
Q_fixed <- sum((fixed_model$yi - fixed_model$beta)^2 / fixed_model$vi)
## Warning in fixed_model$yi - fixed_model$beta: Recycling array of length 1 in vector-array arithmetic is deprecated.
##   Use c() or as.vector() instead.
# Rasgele model için Cochran's Q hesaplama
Q_random <- sum((random_model$yi - random_model$beta)^2 / random_model$vi)
## Warning in random_model$yi - random_model$beta: Recycling array of length 1 in vector-array arithmetic is deprecated.
##   Use c() or as.vector() instead.
Q_fixed
## [1] 94.3856
Q_random
## [1] 94.52604
results <- data.frame(
  study = 1:nrow(data),
  mean_exp = mean_exp,
  mean_control = mean_control,
  pooled_sd = pooled_sd,
  g = g,
  SE_g = SE_g,
  var_g = var_g,
  lower_ci = lower_ci,
  upper_ci = upper_ci,
  z_value = z_value,
  p_value = p_value
)

# Sonuçları görüntüle
print(results)
##    study mean_exp mean_control pooled_sd            g      SE_g      var_g
## 1      1    70.71        56.27 17.819449  0.804133004 0.2305295 0.05314383
## 2      2    59.40        41.66 78.884420  0.221965382 0.2949492 0.08699506
## 3      3    33.71        26.60 22.492004  0.312761326 0.2356715 0.05554104
## 4      4     3.69         3.07  2.529160  0.241900890 0.2579115 0.06651832
## 5      5     5.17         3.07  2.545830  0.814165649 0.2651936 0.07032764
## 6      6     6.04         6.06  2.792380 -0.007016178 0.3146537 0.09900697
## 7      7    94.58        75.61 13.073750  1.437180115 0.2469052 0.06096218
## 8      8    98.67        75.61 14.021769  1.627394878 0.2666053 0.07107838
## 9      9     7.45         5.60  1.988328  0.905283031 0.3730337 0.13915413
## 10    10     4.40         2.45  1.542222  1.230235840 0.3874314 0.15010312
## 11    11    19.12        16.29  3.723882  0.747501202 0.2936914 0.08625462
## 12    12    45.71        66.43 10.499155 -1.916011848 0.4432254 0.19644879
## 13    13    50.50        46.75 25.790450  0.144756424 0.1526744 0.02330948
## 14    14    52.88        53.28 43.294961 -0.008735008 0.4727295 0.22347321
## 15    15    73.43        68.06 11.353389  0.469242550 0.2042260 0.04170828
## 16    16    55.91        44.44 19.847399  0.573185422 0.2094871 0.04388486
## 17    17    20.94        21.47 10.073266 -0.052374997 0.1543107 0.02381179
##       lower_ci   upper_ci     z_value      p_value
## 1   0.35229528  1.2559707  3.48820075 4.862828e-04
## 2  -0.35613513  0.8000659  0.75255451 4.517177e-01
## 3  -0.14915477  0.7746774  1.32710725 1.844732e-01
## 4  -0.26360556  0.7474073  0.93792224 3.482844e-01
## 5   0.29438620  1.3339451  3.07008034 2.140012e-03
## 6  -0.62373750  0.6097051 -0.02229809 9.822102e-01
## 7   0.95324593  1.9211143  5.82077712 5.857464e-09
## 8   1.10484852  2.1499412  6.10413590 1.033583e-09
## 9   0.17413700  1.6364291  2.42681307 1.523210e-02
## 10  0.47087022  1.9896015  3.17536398 1.496487e-03
## 11  0.17186613  1.3231363  2.54519301 1.092174e-02
## 12 -2.78473372 -1.0472900 -4.32288326 1.540032e-05
## 13 -0.15448542  0.4439983  0.94813810 3.430592e-01
## 14 -0.93528488  0.9178149 -0.01847781 9.852577e-01
## 15  0.06895951  0.8695256  2.29766265 2.158100e-02
## 16  0.16259063  0.9837802  2.73613659 6.216522e-03
## 17 -0.35482395  0.2500740 -0.33941263 7.342989e-01

Veriler heterojenlik testine göre Q(sd=16) değeri 94,3856 (p<0,05) olarak bulunmuştur. Elde edilen Q değerinin ki-kare tablo değerinin (sd=16, p<0,05) 26,33’ün üzerinde olması verilerin heterojen olduğunu göstermektedir. Hesaplanan I-kare değeri %83,04826’ tür. Bu değer yüksek düzeyde heterojenlik olduğunu göstermektedir.