References

Acemoglu, D., S. Johnson, and J. Robinson. 2001. “The Colonial Origins of Comparative Development: An Empirical Investigation.” The American Economic Review 91 (5): 1369–1401.
Albert, J. H., and S. Chib. 1993. “Bayesian Analysis of Binary and Polychotomous Response Data.” Journal of the American Statistical Association 88 (422): 669–79.
Albert, Jim. 2009. Bayesian Computation with r. 2nd ed. Use r! New York, NY: Springer. https://doi.org/10.1007/978-0-387-92297-3.
An, Sungbae, and Frank Schorfheide. 2007. “Bayesian Analysis of DSGE Models.” Econometric Reviews 26 (2-4): 113–72.
Andrieu, C., A. Doucet, and R. Holenstein. 2010. “Particle Markov Chain Monte Carlo Methods.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72 (3): 269–342.
Andrieu, Christophe, Arnaud Doucet, and Roman Holenstein. 2010. “Particle Markov Chain Monte Carlo Methods.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72 (3): 269–342. https://doi.org/10.1111/j.1467-9868.2009.00736.x.
Barbieri, M., and J. Berger. 2004. “Optimal Predictive Model Selection.” The Annals of Statistics 32 (3): 870–97.
Bayarri, M. J., and J. Berger. 2004. “The Interplay of Bayesian and Frequentist Analysis.” Statistical Science 19 (1): 58–80.
Bayarri, M., and J. Berger. 2000. “P–Values for Composite Null Models.” Journal of American Statistical Association 95: 1127–42.
Bayes, T. 1763. “An Essay Towards Solving a Problem in the Doctrine of Chances.” Philosophical Transactions of the Royal Society of London 53: 370–416.
Bayes, Thomas. 1763. “LII. An Essay Towards Solving a Problem in the Doctrine of Chances. By the Late Rev. Mr. Bayes, FRS Communicated by Mr. Price, in a Letter to John Canton, AMFR S.” Philosophical Transactions of the Royal Society of London, no. 53: 370–418.
Benjamin, Daniel J, James O Berger, Magnus Johannesson, Brian A Nosek, E-J Wagenmakers, Richard Berk, Kenneth A Bollen, et al. 2018. “Redefine Statistical Significance.” Nature Human Behaviour 2 (1): 6–10.
Berger, J. 1993. Statistical Decision Theory and Bayesian Analysis. Third Edition. Springer.
———. 2006. “The Case for Objective Bayesian Analysis.” Bayesian Analysis 1 (3): 385–402.
Berger, James O. 2013. Statistical Decision Theory and Bayesian Analysis. Springer Science & Business Media.
Berger, James O, and Luis R Pericchi. 1996. “The Intrinsic Bayes Factor for Model Selection and Prediction.” Journal of the American Statistical Association 91 (433): 109–22.
Bernardo, José M, and Adrian FM Smith. 2009. Bayesian Theory. Vol. 405. John Wiley & Sons.
Bernardo, J., and A. Smith. 1994. Bayesian Theory. Chichester: Wiley.
Bickel, Peter J, and Joseph A Yahav. 1969. “Some Contributions to the Asymptotic Theory of Bayes Solutions.” Zeitschrift für Wahrscheinlichkeitstheorie Und Verwandte Gebiete 11 (4): 257–76.
Bollerslev, Tim. 1986. “Generalized Autoregressive Conditional Heteroskedasticity.” Journal of Econometrics 31 (3): 307–27. https://doi.org/10.1016/0304-4076(86)90063-1.
Box, G. E. P. 1976. “Science and Statistics.” Journal of the American Statistical Association 71: 791–99.
Box, George E. P., and Gwilym M. Jenkins. 1976. Time Series Analysis: Forecasting and Control. 1st ed. San Francisco: Holden-Day.
Box, George EP. 1979. “Robustness in the Strategy of Scientific Model Building.” In Robustness in Statistics, 201–36. Elsevier.
Burnham, Kenneth P, and David R Anderson. 2004. “Multimodel Inference: Understanding AIC and BIC in Model Selection.” Sociological Methods & Research 33 (2): 261–304.
Cameron, Colin, and Pravin Trivedi. 2005. Microeconometrics: Methods and Applications. Cambridge.
Cappé, O., S. J. Godsill, and E. Moulines. 2007. “An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo.” Proceedings of the IEEE 95 (5): 899–924.
Cappé, Olivier, Simon J Godsill, and Eric Moulines. 2007. “An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo.” Proceedings of the IEEE 95 (5): 899–924.
Carlin, Bradley P, Alan E Gelfand, and Adrian FM Smith. 1992. “Hierarchical Bayesian Analysis of Changepoint Problems.” Journal of the Royal Statistical Society: Series C (Applied Statistics) 41 (2): 389–405.
Carpenter, Bob, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. 2017. “Stan: A Probabilistic Programming Language.” Journal of Statistical Software 76: 1–32.
Carpenter, J., P. Clifford, and P. Fearnhead. 1999. “Improved Particle Filter for Nonlinear Problems.” IEE Proceedings-Radar, Sonar and Navigation 146 (1): 2–7.
Carter, Chris K, and Robert Kohn. 1994. “On Gibbs Sampling for State Space Models.” Biometrika 81 (3): 541–53.
Casella, George, and Roger Berger. 2024. Statistical Inference. CRC Press.
Casella, G., and E. Moreno. 2006. “Objective Bayesian Variable Selection.” Journal of the American Statistical Association 101 (473): 157–67.
Chan, Joshua, Gary Koop, Dale J Poirier, and Justin L Tobias. 2019. Bayesian Econometric Methods. Vol. 7. Cambridge University Press.
Chang, W. 2018. Web Application Framework for r: Package Shiny. R Studio. http://shiny.rstudio.com/.
Chernozhukov, V., and H. Hong. 2003. “An MCMC Approach to Classical Estimation.” Journal of Econometrics 115: 293–346.
Chib, S. 1992. “Bayes Inference in the Tobit Censored Regression Model.” Journal of Econometrics 51: 79–99.
Chib, S., and B. Carlin. 1999. “On MCMC Sampling in Hierarchical Longitudinal Models.” Statistics and Computing 9: 17–26.
Chib, Siddhartha. 1993. “Bayes Regression with Autoregressive Errors: A Gibbs Sampling Approach.” Journal of Econometrics 58 (3): 275–94.
———. 1995. “Marginal Likelihood from the Gibbs Output.” Journal of the American Statistical Association 90 (432): 1313–21.
Chib, Siddhartha, and Edward Greenberg. 1994. “Bayes Inference in Regression Models with ARMA (p, q) Errors.” Journal of Econometrics 64 (1-2): 183–206.
———. 1995. “Understanding the Metropolis-Hastings Algorithm.” The American Statistician 49 (4): 327–35.
Chib, Siddhartha, and Ivan Jeliazkov. 2001. “Marginal Likelihood from the Metropolis–Hastings Output.” Journal of the American Statistical Association 96 (453): 270–81.
Chib, Siddhartha, and Todd A Kuffner. 2016. “Bayes Factor Consistency.” arXiv Preprint arXiv:1607.00292.
Claeskens, Gerda, and Nils Lid Hjort. 2008. “Model Selection and Model Averaging.” Cambridge Books.
Clyde, M., and E. George. 2004. “Model Uncertatinty.” Statistical Science 19 (1): 81–94.
Conley, T., C. Hansen, and P. Rossi. 2012. “Plausibly Exogenous.” The Review of Economics and Statistics 94 (1): 260–72.
Dahlin, Johan, and Thomas B Schön. 2019. “Getting Started with Particle Metropolis-Hastings for Inference in Nonlinear Dynamical Models.” Journal of Statistical Software 88: 1–41.
Dawid, A. P., M. Musio, and S. E. Fienberg. 2016. “From Statistical Evidence to Evidence of Causality.” Bayesian Analysis 11 (3): 725–52.
De Jong, Piet, and Neil Shephard. 1995. “The Simulation Smoother for Time Series Models.” Biometrika 82 (2): 339–50.
DeGroot, M. H. 1975. Probability and Statistics. London: Addison-Wesley Publishing Co.
Del Negro, Marco, and F. Schorfheide. 2011. “Forecasting with Bayesian VAR Models.” In The Oxford Handbook of Bayesian Econometrics, edited by John Geweke, Gary Koop, and Herman van Dijk, 224–54. Oxford University Press.
Diaconis, Persi, Donald Ylvisaker, et al. 1979. “Conjugate Priors for Exponential Families.” The Annals of Statistics 7 (2): 269–81.
Dickey, J. M., and E. Gunel. 1978. “Bayes Factors from Mixed Probabilities.” Journal of the Royal Statistical Society: Series B (Methodology) 40: 43–46.
Dickey, James M. 1971. “The Weighted Likelihood Ratio, Linear Hypotheses on Normal Location Parameters.” The Annals of Mathematical Statistics, 204–23.
Diggle, Peter., P. Heagerty, Liang K-Y., and S. Zeger. 2002. Analysis of Longitudinal Data. Oxford University Press.
Doan, Thomas, Robert Litterman, and Christopher Sims. 1984. “Forecasting and Conditional Projection Using Realistic Prior Distributions.” Econometric Reviews 3 (1): 1–100.
Doucet, Arnaud, Nando De Freitas, and Neil Gordon. 2001. “An Introduction to Sequential Monte Carlo Methods.” Sequential Monte Carlo Methods in Practice, 3–14.
Doucet, Arnaud, Adam M Johansen, et al. 2009. “A Tutorial on Particle Filtering and Smoothing: Fifteen Years Later.” Handbook of Nonlinear Filtering 12 (656-704): 3.
Duane, Simon, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. 1987. “Hybrid Monte Carlo.” Physics Letters B 195 (2): 216–22.
Edwards, Y. D., and G. M. Allenby. 2003. “Multivariate Analysis of Multiple Response Data.” Journal of Marketing Research 40: 321–34.
Efron, B. 1979. “Bootstrap Methods: Another Look at the Jackknife.” The Annals of Statistics 7: 1–26.
Efron, Bradley, and Trevor Hastie. 2016. Computer Age Statistical Inference. Vol. 5. Cambridge University Press.
Enders, Walter. 2014. Applied Econometric Time Series. 4th ed. Hoboken, NJ: Wiley.
Fernandez, Carmen, Eduardo Ley, and Mark FJ Steel. 2001. “Benchmark Priors for Bayesian Model Averaging.” Journal of Econometrics 100 (2): 381–427.
Finetti, de. 1937. “Foresight: Its Logical Laws, Its Subjective Sources.” In Studies in Subjective Probability, edited by H. E. Kyburg and H. E. Smokler. New York: Krieger.
Fisher, R. 1958. Statistical Methods for Research Workers. 13th ed. New York: Hafner.
Frühwirth-Schnatter, Sylvia. 1994. “Data Augmentation and Dynamic Linear Models.” Journal of Time Series Analysis 15 (2): 183–202.
———. 2006. Finite Mixture and Markov Switching Models. Springer.
Furnival, George M., and Robert W. Wilson. 1974. “Regressions by Leaps and Bounds.” Technometrics 16 (4): 499–511.
Garthwaite, P., J. Kadane, and A. O’Hagan. 2005. “Statistical Methods for Eliciting Probability Distributions.” Journal of American Statistical Association 100 (470): 680–701.
Gelfand, A. E., and A. F. M. Smith. 1990. “Sampling-Based Approaches to Calculating Marginal Densities.” Journal of the American Statistical Association 85: 398–409.
Gelfand, Alan E, and Dipak K Dey. 1994. “Bayesian Model Choice: Asymptotics and Exact Calculations.” Journal of the Royal Statistical Society: Series B (Methodological) 56 (3): 501–14.
Gelman, A., and X. Meng. 1996. “Model Checking and Model Improvement.” In In Markov Chain Monte Carlo in Practice, edited by Gilks, Richardson, and Speigelhalter. Springer US.
Gelman, A., X. Meng, and H. Stern. 1996. “Posterior Predictive Assessment of Model Fitness via Realized Discrepancies.” Statistica Sinica, 733–60.
Gelman, Andrew et al. 2006. “Prior Distributions for Variance Parameters in Hierarchical Models (Comment on Article by Browne and Draper).” Bayesian Analysis 1 (3): 515–34.
Gelman, Andrew, John B Carlin, Hal S Stern, David Dunson, Aki Vehtari, and Donald B Rubin. 2021. Bayesian Data Analysis. Chapman; Hall/CRC.
Gelman, Andrew, and Guido Imbens. 2013. “Why Ask Why? Forward Causal Inference and Reverse Causal Questions.” National Bureau of Economic Research.
Gelman, Andrew, and Donald B. Rubin. 1992. “Inference from Iterative Simulation Using Multiple Sequences.” Statistical Science 7 (4): 457–72. https://doi.org/10.1214/ss/1177011136.
Geman, S, and D. Geman. 1984. “Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images.” IEEE Transactions on Pattern Analysis and Machine Intelligence 6: 721–41.
George, E., and R. McCulloch. 1993. “Variable Selection via Gibbs Sampling.” Journal of the American Statistical Association 88 (423): 881–89.
———. 1997. “Approaches for Bayesian Variable Selection.” Statistica Sinica 7: 339–73.
Geweke, J. 1992. “Bayesian Statistics.” In. Clarendon Press, Oxford, UK.
Geweke, John. 1999. “Using Simulation Methods for Bayesian Econometric Models: Inference, Development, and Communication.” Econometric Reviews 18 (1): 1–73.
———. 2004. “Getting It Right: Joint Distribution Tests of Posterior Simulators.” Journal of the American Statistical Association 99 (467): 799–804.
———. 2005. Contemporary Bayesian Econometrics and Statistics. Vol. 537. John Wiley & Sons.
Geweke, John, Gary Koop, and Herman K van Dijk. 2011. The Oxford Handbook of Bayesian Econometrics. Oxford University Press, USA.
Geyer, Charles J. 1992. “Practical Markov Chain Monte Carlo.” Statistical Science, 473–83.
Giordano, Ryan, Runjing Liu, Michael I Jordan, and Tamara Broderick. 2022. “Evaluating Sensitivity to the Stick-Breaking Prior in Bayesian Nonparametrics.” Bayesian Analysis 1 (1): 1–34.
Good, I. J. 1992. “The Bayes/Non Bayes Compromise: A Brief Review.” Journal of the American Statistical Association 87 (419): 597–606.
Goodman, S. N. 1999. “Toward Evidence-Based Medical Statistics. 1: The P Value Fallacy.” Annals of Internal Medicine 130 (12): 995–1004.
Gordon, N. J., D. J. Salmond, and A. F. Smith. 1993. “Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation.” IEE Proceedings F (Radar and Signal Processing) 140 (2): 107–13.
Green, P. J. 1995. “Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination.” Biometrika 82: 711–32.
Greenberg, Edward. 2012. Introduction to Bayesian Econometrics. Cambridge University Press.
Gujarati, Damodar N., and Dawn C. Porter. 2009. Basic Econometrics. 5th ed. New York, NY: McGraw-Hill Education.
Gustafson, Paul. 2000. “Local Robustness in Bayesian Analysis.” In Robust Bayesian Analysis, 71–88. Springer.
Handschin, Johannes Edmund, and David Q Mayne. 1969. “Monte Carlo Techniques to Estimate the Conditional Expectation in Multi-Stage Non-Linear Filtering.” International Journal of Control 9 (5): 547–59.
Hastings, W. 1970. “Monte Carlo Sampling Methods Using Markov Chains and Their Application.” Biometrika 57: 97–109.
Heidelberger, P., and P. D. Welch. 1983. “Simulation Run Length Control in the Presence of an Initial Transient.” Operations Research 31 (6): 1109–44.
Helmut, Lütkepohl. 2005. New Introduction to Multiple Time Series Analysis. Springer.
Hoeting, J., D. Madigan, A. Raftery, and C. Volinsky. 1999. “Bayesian Model Averaging: A Tutorial.” Statistical Science 14 (4): 382–417.
Hosszejni, Daniel, and Gregor Kastner. 2021. “Modeling Univariate and Multivariate Stochastic Volatility in r with stochvol and factorstochvol.” Journal of Statistical Software 100 (12): 1–34. https://doi.org/10.18637/jss.v100.i12.
Ibrahim, Joseph G., and Purushottam W. Laud. 1991. “On Bayesian Analysis of Generalized Linear Models Using Jeffreys’s Prior.” Journal of the American Statistical Association 86 (416): 981–86.
Ishwaran, H., and J. S. Rao. 2005. “Spike and Slab Variable Selection: Frequentist and Bayesian Strategies.” The Annals of Statistics 33 (2): 730–73.
Jacobi, Liana, Chun Fung Kwok, Andrés Ramı́rez-Hassan, and Nhung Nghiem. 2024. “Posterior Manifolds over Prior Parameter Regions: Beyond Pointwise Sensitivity Assessments for Posterior Statistics from MCMC Inference.” Studies in Nonlinear Dynamics & Econometrics 28 (2): 403–34.
Jacobi, Liana, Dan Zhu, and Mark Joshi. 2022. “Estimating Posterior Sensitivities with Application to Structural Analysis of Bayesian Vector Autoregressions.” Available at SSRN 3347399. https://ssrn.com/abstract=3347399 or http://dx.doi.org/10.2139/ssrn.3347399.
Jeffreys, H. 1935. “Some Test of Significance, Treated by the Theory of Probability.” Proccedings of the Cambridge Philosophy Society 31: 203–22.
———. 1961. Theory of Probability. London: Oxford University Press.
Jeffreys, Harold. 1946. “An Invariant Form for the Prior Probability in Estimation Problems.” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 186 (1007): 453–61.
Jetter, M., and A. Ramírez Hassan. 2015. “Want Export Diversification? Educate the Kids First.” Economic Inquiry 53 (4): 1765–82.
Jhonson, V. E., and D. Rossell. 2012. “Bayesian Model Selection in High-Dimensional Settings.” Journal of the American Statistical Association 107 (498): 649–60.
Johnson, Valen E, and David Rossell. 2012. “Bayesian Model Selection in High-Dimensional Settings.” Journal of the American Statistical Association 107 (498): 649–60.
Kadane, J. B. 1980. “Predictive and Structural Methods for Eliciting Prior Distributions.” In Bayesian Analysis in Econometrics and Statistics: Essays in Honor of Harold Jeffreys, edited by A Zellner, 89–93. Amsterdam: North–Holland Publishing Company,.
Kadane, Joseph, and Lara Wolfson. 1998. “Experiences in Elitation.” The Statiscian 47 (1): 3–19.
Kahneman, Daniel. 2011. Thinking, Fast and Slow. Macmillan.
Kantas, N., A. Doucet, S. S. Singh, and J. M. Maciejowski. 2009. “An Overview of Sequential Monte Carlo Methods for Parameter Estimation in General State–Space Models.” IFAC Proceedings Volumes 42 (10): 774–85.
Kantas, Nikolas, Arnaud Doucet, Sumeetpal S Singh, Jan Maciejowski, Nicolas Chopin, et al. 2015. “On Particle Methods for Parameter Estimation in State-Space Models.” Statistical Science 30 (3): 328–51.
Karabatsos, G. 2016. “A Menu-Driven Software Package of Bayesian Nonparametric (and Parametric) Mixed Models for Regression Analysis and Density Estimation.” Behavior Research Methods 49: 335–62.
Karl, A., and A. Lenkoski. 2012. “Instrumental Variable Bayesian Model Averaging via Conditional Bayes Factor.” Heidelberg University.
Kass, R E, and A E Raftery. 1995. Bayes factors.” Journal of the American Statistical Association 90 (430): 773–95.
Kass, R. 2011. “Statistical Inference: The Big Picture.” Statistical Science 26 (1): 1–9.
Kastner, Gregor, and Sylvia Frühwirth-Schnatter. 2014. “Ancillarity-Sufficiency Interweaving Strategy (ASIS) for Boosting MCMC Estimation of Stochastic Volatility Models.” Computational Statistics & Data Analysis 76: 408–23.
Kim, Chang-Jin, and Charles R Nelson. 1999. “Has the US Economy Become More Stable? A Bayesian Approach Based on a Markov-Switching Model of the Business Cycle.” Review of Economics and Statistics 81 (4): 608–16.
Kong, Augustine, Jun S Liu, and Wing Hung Wong. 1994. “Sequential Imputations and Bayesian Missing Data Problems.” Journal of the American Statistical Association 89 (425): 278–88.
Koop, Gary M. 2003. Bayesian Econometrics. John Wiley & Sons Inc.
Koop, Gary, Dimitris Korobilis, et al. 2010. “Bayesian Multivariate Time Series Methods for Empirical Macroeconomics.” Foundations and Trends in Econometrics 3 (4): 267–358.
Koop, G, R León-Gonzalez, and R Strachan. 2012. “Bayesian Model Averaging in the Instrumental Variable Regression Model.” Journal of Econometrics 171: 237–50.
Kozumi, Hideo, and Genya Kobayashi. 2011. “Gibbs Sampling Methods for Bayesian Quantile Regression.” Journal of Statistical Computation and Simulation 81 (11): 1565--1578.
Krueger, Fabian. 2022. Bvarsv: Bayesian Analysis of a Vector Autoregressive Model with Stochastic Volatility and Time-Varying Parameters. https://doi.org/10.32614/CRAN.package.bvarsv.
Lancaster, Tony. 2004. An Introduction to Modern Bayesian Econometrics. Blackwell Oxford.
Laplace, P. 1812. Théorie Analytique Des Probabilités. Courcier.
Laplace, Pierre Simon. 1774. “Mémoire Sur La Probabilité de Causes Par Les évenements.” Mémoire de l’académie Royale Des Sciences.
Lehmann, E. L., and George Casella. 2003. Theory of Point Estimation. Second Edition. Springer.
Lenkoski, Alex, Theo S. Eicher, and Adrian Raftery. 2014. “Two-Stage Bayesian Model Averaging in Endogeneous Variable Models.” Econometric Reviews 33.
Lenkoski, Alex, Anna Karl, and Andreas Neudecker. 2013. Package ivbma. https://CRAN.R-project.org/package=ivbma.
Ley, Eduardo, and Mark FJ Steel. 2009. “On the Effect of Prior Assumptions in Bayesian Model Averaging with Applications to Growth Regression.” Journal of Applied Econometrics 24 (4): 651–74.
Lindley, D. V. 2000. “The Philosophy of Statistics.” The Statistician 49 (3): 293–337.
Lindley, D. V., and L. D. Phillips. 1976. “Inference for a Bernoulli Process (a Bayesian View).” American Statistician 30: 112–19.
Lindley, Dennis V. 1957. “A Statistical Paradox.” Biometrika 44 (1/2): 187–92.
Litterman, Robert B. 1986. “Forecasting with Bayesian Vector Autoregressions—Five Years of Experience.” Journal of Business & Economic Statistics 4 (1): 25–38.
Liu, J. S., and R. Chen. 1995. “Blind Deconvolution via Sequential Imputations.” Journal of the American Statistical Association 90 (430): 567–76.
Luis, Gruber, and Kastner Gregor. 2024. BayesianVARs: MCMC Estimation of Bayesian Vectorautoregressions. https://doi.org/10.32614/CRAN.package.bayesianVARs.
Madigan, David, Jeremy York, and Denis Allard. 1995. “Bayesian Graphical Models for Discrete Data.” International Statistical Review 63: 215–32.
Madigan, D., and A. E. Raftery. 1994. Model selection and accounting for model uncertainty in graphical models using Occam’s window.” Journal of the American Statistical Association 89 (428): 1535–46.
Madigan, D., J. C. York, and D. Allard. 1995. “Bayesian Graphical Models for Discrete Data.” International Statistical Review 63 (2): 215–32.
Martin, Andrew D., Kevin M. Quinn, and Jong Hee Park. 2011. MCMCpack: Markov Chain Monte Carlo in R.” Journal of Statistical Software 42 (9): 1–21.
———. 2018. Package MCMCpack.
McCormick, Tyler H, Adrian E Raftery, David Madigan, and Randall S Burd. 2012. “Dynamic Logistic Regression and Dynamic Model Averaging for Binary Classification.” Biometrics 68 (1): 23–30.
McCullagh, P., and J. A. Nelder. 1989. Generalized Linear Models. London: Chapman; Hall.
McCulloch, Robert E, Nicholas G Polson, and Peter E Rossi. 2000. “A Bayesian Analysis of the Multinomial Probit Model with Fully Identified Parameters.” Journal of Econometrics 99 (1): 173–93.
McCulloch, R., and P. Rossi. 1994. “An Exact Likelihood Analysis of the Multinomial Probit Model.” Journal of Econometrics 64: 207–40.
McGrayne, Sharon Bertsch. 2011. The Theory That Would Not Die: How Bayes’ Rule Cracked the Enigma Code, Hunted down Russian Submarines, & Emerged Triumphant from Two Centuries of c. Yale University Press.
Mertens, Karel, and Morten O Ravn. 2014. “A Reconciliation of SVAR and Narrative Estimates of Tax Multipliers.” Journal of Monetary Economics 68: S1–19.
Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. 1953. “Equations of State Calculations by Fast Computing Machines.” J. Chem. Phys 21: 1087–92.
Morgan, John P, N Rao Chaganty, Ram C Dahiya, and Michael J Doviak. 1991. “Let’s Make a Deal: The Player’s Dilemma.” The American Statistician 45 (4): 284–87.
Neal, Radford M. 1996. Bayesian Learning for Neural Networks. Vol. 118. Lecture Notes in Statistics. Springer. https://doi.org/10.1007/978-1-4612-0745-0.
———. 2011. “MCMC Using Hamiltonian Dynamics.” In Handbook of Markov Chain Monte Carlo, edited by Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng, 113–62. Chapman; Hall/CRC.
Nelder, J. A., and R. W. M. Wedderburn. 1972. “Generalized Linear Models.” Journal of the Royal Statistical Society: Series A (General) 135 (3): 370–84.
Neyman, J., and E. Pearson. 1933. “On the Problem of the Most Efficient Tests of Statistical Hypotheses.” Philosophical Transactions of the Royal Society, Series A 231: 289–337.
Nikolas, Kuschnig, Vashold Lukas, Tomass Nirai, McCracken Michael, and Ng Serena. 2022. BVAR: Hierarchical Bayesian Vector Autoregression. https://doi.org/10.32614/CRAN.package.BVAR.
Nobile, Agostino. 2000. “Comment: Bayesian Multinomial Probit Models with a Normalization Constraint.” Journal of Econometrics 99 (2): 335–45.
Park, T., and G. Casella. 2008. “The Bayesian Lasso.” Journal of the American Statistical Association 103 (482): 681–86.
Parmigiani, G., and L. Inoue. 2008. Decision Theory Principles and Approaches. John Wiley & Sons.
Pericchi, Luis, and Carlos Pereira. 2015. Adaptative significance levels using optimal decision rules: Balancing by weighting the error probabilities.” Brazilian Journal of Probability and Statistics.
Petris, Giovanni, Sonia Petrone, and Patrizia Campagnoli. 2009. “Dynamic Linear Models.” In Dynamic Linear Models with r, 31–84. Springer.
Pole, Andy, Mike West, and Jeff Harrison. 2018. Applied Bayesian Forecasting and Time Series Analysis. Chapman; Hall/CRC.
R Core Team. 2023. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
Raftery, A. 1995. “Bayesian Model Selection in Social Research.” Sociological Methodology 25: 111–63.
Raftery, A. E., and S. M. Lewis. 1992. “One Long Run with Diagnostics: Implementation Strategies for Markov Chain Monte Carlo.” Statistical Science 7: 493–97.
Raftery, Adrian E. 1993. “Bayesian Model Selection in Structural Equation Models.” Sage Focus Editions 154: 163–63.
Raftery, Adrian E, Miroslav Kárnỳ, and Pavel Ettler. 2010. “Online Prediction Under Model Uncertainty via Dynamic Model Averaging: Application to a Cold Rolling Mill.” Technometrics 52 (1): 52–66.
Raftery, Adrian E., David Madigan, and Jennifer A. Hoeting. 1997. “Bayesian Model Averaging for Linear Regression Models.” Journal of the American Statistical Association 92 (437): 179–91.
Raftery, Adrian, Jennifer Hoeting, Chris Volinsky, Ian Painter, and Ka Yee Yeung. 2012. Package BMA. https://CRAN.R-project.org/package=BMA.
Ramírez Hassan, A. 2017. “The Interplay Between the Bayesian and Frequentist Approaches: A General Nesting Spatial Panel Data Model.” Spatial Economic Analysis 12 (1): 92–112.
Ramírez Hassan, A., J. Cardona Jiménez, and R. Cadavid Montoya. 2013. “The Impact of Subsidized Health Insurance on the Poor in Colombia: Evaluating the Case of Medellín.” Economia Aplicada 17 (4): 543–56.
Ramírez-Hassan, A., and M. Graciano-Londoño. 2020. “A GUIded Tour of Bayesian Regression.” The R Journal 13 (2): 135–52.
Ramírez-Hassan, A., and R. Guerra-Urzola. 2021. “Bayesian Treatment Effects Due to a Subsidized Health Program: The Case of Preventive Health Care Utilization in Medellín (Colombia).” Empirical Economics 60: 1477–1506.
Ramı́rez-Hassan, Andrés. 2020. “Dynamic Variable Selection in Dynamic Logistic Regression: An Application to Internet Subscription.” Empirical Economics 59 (2): 909–32.
Ramı́rez-Hassan, Andrés, and Daniela A. Carvajal-Rendón. 2021. “Specification Uncertainty in Modeling Internet Adoption: A Developing City Case Analysis.” Utilities Policy 70: 101218.
Ramı́rez-Hassan, Andrés, and David T. Frazier. 2024. “Testing Model Specification in Approximate Bayesian Computation Using Asymptotic Properties.” Journal of Computational and Graphical Statistics 33 (3): 1–14.
Ramı́rez–Hassan, Andrés, and Alejandro López-Vera. 2024. “Welfare Implications of a Tax on Electricity: A Semi-Parametric Specification of the Incomplete EASI Demand System.” Energy Economics 131: 1–13.
Ramsey, F. 1926. “Truth and Probability.” In The Foundations of Mathematics and Other Logical Essays, edited by Routledge and Kegan Paul. London: New York: Harcourt, Brace; Company.
Rendon, Silvio R. 2013. “Fixed and Random Effects in Classical and Bayesian Regression.” Oxford Bulletin of Economics and Statistics 75 (3): 460–76.
Richardson, Sylvia, and Peter J Green. 1997. “On Bayesian Analysis of Mixtures with an Unknown Number of Components (with Discussion).” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 59 (4): 731–92.
Robert, Christian P., and George Casella. 2011. Monte Carlo Statistical Methods. 2nd ed. New York: Springer.
Robert, Christian P, George Casella, and George Casella. 2010. Introducing Monte Carlo Methods with r. Vol. 18. Springer.
Roberts, G. O., A. Gelman, and W. R. Gilks. 1997. “Weak Convergence and Optimal Scaling of Random Walk Metropolis Algorithms.” The Annals of Applied Probability 7 (1): 110–20.
Rossi, P. 2017. Package Bayesm. https://CRAN.R-project.org/package=bayesm.
Rossi, Peter E, Greg M Allenby, and Rob McCulloch. 2012. Bayesian Statistics and Marketing. John Wiley & Sons.
Rubin, Donald B. 1988. “Using the SIR Algorithm to Simulate Posterior Distributions.” In Bayesian Statistics 3, edited by J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and A. F. M. Smith, 395–402. Oxford University Press.
Rubin, Donnald B. 1981. “The Bayesian Bootstrap.” The Annals of Statistics 9 (1): 130–34.
Savage, L. J. 1954. The Foundations of Statistics. New York: John Wiley & Sons, Inc.
Schlaifer, Robert, and Howard Raiffa. 1961. Applied Statistical Decision Theory.
Schwarz, Gideon. 1978. “Estimating the Dimension of a Model.” The Annals of Statistics, 461–64.
Sellke, Thomas, MJ Bayarri, and James O Berger. 2001. “Calibration of p Values for Testing Precise Null Hypotheses.” The American Statistician 55 (1): 62–71.
Selvin, Steve. 1975. “A Problem in Probability (Letter to the Editor).” The American Statistician 11 (1): 67–71.
Serna Rodríguez, M., A. Ramírez Hassan, and A. Coad. 2019. “Uncovering Value Drivers of High Performance Soccer Players.” Journal of Sport Economics 20 (6): 819–49.
Shephard, Neil. 1994. “Partial Non-Gaussian State Space.” Biometrika 81 (1): 115–31.
Shumway, Robert H., and David S. Stoffer. 2017. Time Series Analysis and Its Applications: With r Examples. 4th ed. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-52452-8.
Simmons, Susan J, Fang Fang, Qijun Fang, and Karl Ricanek. 2010. “Markov Chain Monte Carlo Model Composition Search Strategy for Quantitative Trait Loci in a Bayesian Hierarchical Model.” World Academy of Science, Engineering and Technology 63: 58–61.
Sims, Christopher A. 1980. “Macroeconomics and Reality.” Econometrica: Journal of the Econometric Society, 1–48.
Smith, A. F. M. 1973. A General Bayesian Linear Model.” Journal of the Royal Statistical Society. Series B (Methodological). 35 (1): 67–75.
Smith, Adrian FM, and Alan E Gelfand. 1992. “Bayesian Statistics Without Tears: A Sampling–Resampling Perspective.” The American Statistician 46 (2): 84–88.
Stan Development Team. 2017. “Shinystan: Interactive Visual and Numerical Diagnostics and Posterior Analysis for Bayesian Models.” http://mc-stan.org/.
———. 2024. “Stan Modeling Language Users Guide and Reference Manual, 2024.” http://mc-stan.org/.
Stigler, Stephen. 2018. “Richard Price, the First Bayesian.” Statistical Science 33 (1): 117–25.
Tanner, M. A., and W. H. Wong. 1987. “The Calculation of Posterior Distributions by Data Augmentation.” Journal of the American Statistical Association 82 (398): 528–40.
Thomas, Samuel, and Wanzhu Tu. 2021. “Learning Hamiltonian Monte Carlo in r.” The American Statistician 75 (4): 403–13.
Tierney, Luke. 1994. “Markov Chains for Exploring Posterior Distributions.” The Annals of Statistics, 1701–28.
Tierney, Luke, and Joseph B Kadane. 1986. “Accurate Approximations for Posterior Moments and Marginal Densities.” Journal of the American Statistical Association 81 (393): 82–86.
Tversky, A., and D. Kahneman. 1974. “Judgement Under Uncertainty: Heuristics and Biases.” Science 185: 1124–31.
Van der Vaart, Aad W. 2000. Asymptotic Statistics. Vol. 3. Cambridge university press.
Verdinelli, Isabella, and Larry Wasserman. 1995. “Computing Bayes Factors Using a Generalization of the Savage-Dickey Density Ratio.” Journal of the American Statistical Association 90 (430): 614–18.
Walker, Stephen G. 2004a. “Modern Bayesian Asymptotics.” Statistical Science, 111–17.
Walker, Stephen G. 2004b. “New Approaches to Bayesian Consistency.” Annals of Statistics 32 (5): 2028–43. https://doi.org/10.1214/009053604000000409.
Wasserstein, Ronald L., and Nicole A. Lazar. 2016. “The ASA’s Statement on p–Values: Context, Process and Purpose.” The American Statistician.
West, Mike, and Jeff Harrison. 2006. Bayesian Forecasting and Dynamic Models. Springer Science & Business Media.
Winkelmann, R. 2004. “Health Care Reform and the Number of Doctor Visits - An Econometric Analysis.” Journal of Applied Econometrics 19 (4): 455–72.
Woodward, P. 2005. “BugsXLA: Bayes for the Common Man.” Journal of Statistical Software 14 (5): 1–18.
Wooldridge, Jeffrey M. 2010. Econometric Analysis of Cross Section and Panel Data. MIT press.
Wooldridge, Jeffrey M. 2012. Introductory Econometrics: A Modern Approach. Fifth. Mason, Ohio: South-Western: Cengage Learning.
———. 2016. Introductory Econometrics: A Modern Approach. 6th ed. Boston, MA: Cengage Learning.
Woźniak, Tomasz. 2016. “Bayesian Vector Autoregressions.” Australian Economic Review 49 (3): 365–80.
———. 2024. Bsvars: Bayesian Estimation of Structural Vector Autoregressive Models. https://doi.org/10.32614/CRAN.package.bsvars.
Xiaolei, Wang, and Tomasz Woźniak. 2024. bsvarSIGNs: Bayesian SVARs with Sign, Zero, and Narrative Restrictions. https://doi.org/10.32614/CRAN.package.bsvarSIGNs.
Zellner, Arnold. 1986. “On Assessing Prior Distributions and Bayesian Regression Analysis with g-Prior Distributions.” Bayesian Inference and Decision Techniques.
———. 1996. “Introduction to Bayesian Inference in Econometrics.”
Ziliak, S. 2008. “Guinnessometrics; the Economic Foundation of Student’s t.” Journal of Economic Perspectives 22 (4): 199–216.