2 HarvardX: PH125.3x Data Science: Probability

2.1 Section 1: Discrete Probability

2.1.1 Monte Carlo szimuláció

Key points -Monte Carlo simulations model the probability of different outcomes by repeating a random process a large enough number of times that the results are similar to what would be observed if the process were repeated forever.

-The sample function draws random outcomes from a set of options.

-The replicate function repeats lines of code a set number of times. It is used with sample and similar functions to run Monte Carlo simulations.

Code: The rep function and the sample function

beads <- rep(c("red", "blue"), times = c(2,3))    # create an urn with 2 red, 3 blue
beads    # view beads object
## [1] "red"  "red"  "blue" "blue" "blue"
sample(beads, 1)    # sample 1 bead at random
## [1] "blue"

replicate() funkcióval eltudjuk készíteni a Monte Carlo szimulációnkat, amivel a valós eredménykhez közeli érétket kaphatunk. Tehát 10000-szer futtatva 5 db golyó közül 3 kék és 2 piros fog kijönni százalékos szinten is.

B <- 10000    # number of times to draw 1 bead
events <- replicate(B, sample(beads, 1))    # draw 1 bead, B times
tab <- table(events)    # make a table of outcome counts
tab    # view count table
## events
## blue  red 
## 6019 3981
prop.table(tab)    # view table of outcome proportions
## events
##   blue    red 
## 0.6019 0.3981

2.1.2 Third-level header

2.2 Section 2: Continous Probability

2.2.1 Third-level header

2.2.2 Third-level header

2.3 Section 3: Random Variables, Sampling Models, and the Cetral Limit Theorem

2.3.1 Third-level header

2.3.2 Third-level header

2.4 Section 4: The Big Short

2.4.1 Third-level header

2.4.2 Third-level header