References
Amezquita, Robert A., Aaron T. L. Lun, Etienne Becht, Vince J. Carey, Lindsay N. Carpp, Ludwig Geistlinger, Federico Marini, et al. 2020. “Orchestrating single-cell analysis with Bioconductor.” Nat Methods 17 (February): 137–45. https://doi.org/10.1038/s41592-019-0654-x.
Gollini, Isabella, Binbin Lu, Martin Charlton, Christopher Brunsdon, and Paul Harris. 2015. “GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models.” J Stat Soft 63 (February): 1–50. https://doi.org/10.18637/jss.v063.i17.
Guilliams, Martin, Johnny Bonnardel, Birthe Haest, Bart Vanderborght, Camille Wagner, Anneleen Remmerie, Anna Bujko, et al. 2022. “Spatial Proteogenomics Reveals Distinct and Evolutionarily Conserved Hepatic Macrophage Niches.” Cell 185 (2): 379–396.e38. https://doi.org/https://doi.org/10.1016/j.cell.2021.12.018.
Hao, Yuhan, Stephanie Hao, Erica Andersen-Nissen, William M. Mauck, Shiwei Zheng, Andrew Butler, Maddie J. Lee, et al. 2021. “Integrated analysis of multimodal single-cell data.” Cell 184 (13): 3573–3587.e29. https://doi.org/10.1016/j.cell.2021.04.048.
Harris, Paul, Chris Brunsdon, and Martin Charlton. 2011. “Geographically weighted principal components analysis.” International Journal of Geographical Information Science 25 (10): 1717–36. https://doi.org/10.1080/13658816.2011.554838.
Keogh, Eamonn, and Abdullah Mueen. 2017. “Curse of Dimensionality.” In Encyclopedia of Machine Learning and Data Mining, 314–15. Boston, MA, USA: Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7687-1_192.
Li, Yijun, Stefan Stanojevic, Bing He, Zheng Jing, Qianhui Huang, Jian Kang, and Lana X. Garmire. 2022. “Benchmarking Computational Integration Methods for Spatial Transcriptomics Data.” bioRxiv, January, 2021.08.27.457741. https://doi.org/10.1101/2021.08.27.457741.
Lun, Aaron T. L., Davis J. McCarthy, and John C. Marioni. 2016. “A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor.” F1000Research 5 (2122): 2122. https://doi.org/10.12688/f1000research.9501.2.
Maaten, Laurens van der, and Geoffrey Hinton. 2008. “Visualizing Data Using t-SNE.” Journal of Machine Learning Research 9 (86): 2579–2605. http://jmlr.org/papers/v9/vandermaaten08a.html.
Maynard, Kristen R., Leonardo Collado-Torres, Lukas M. Weber, Cedric Uytingco, Brianna K. Barry, Stephen R. Williams, Joseph L. Catallini, et al. 2021. “Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex.” Nat Neurosci 24 (March): 425–36. https://doi.org/10.1038/s41593-020-00787-0.
McCarthy, Davis J., Kieran R. Campbell, Aaron T. L. Lun, and Quin F. Wills. 2017. “Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R.” Bioinformatics 33 (8): 1179–86. https://doi.org/10.1093/bioinformatics/btw777.
McInnes, Leland, John Healy, and James Melville. 2018. “UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction.” arXiv, February. https://doi.org/10.48550/arXiv.1802.03426.
“Notes on Continuous Stochastic Phenomena on JSTOR.” 1950. Biometrika. https://www.jstor.org/stable/2332142.
Righelli, Dario, Lukas M. Weber, Helena L. Crowell, Brenda Pardo, Leonardo Collado-Torres, Shila Ghazanfar, Aaron T. L. Lun, Stephanie C. Hicks, and Davide Risso. 2022. “SpatialExperiment: infrastructure for spatially-resolved transcriptomics data in R using Bioconductor.” Bioinformatics 38 (11): 3128–31. https://doi.org/10.1093/bioinformatics/btac299.
Sun, Shiquan, Jiaqiang Zhu, and Xiang Zhou. 2020. “Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies.” Nat Methods 17 (February): 193–200. https://doi.org/10.1038/s41592-019-0701-7.
Svensson, Valentine, Sarah A. Teichmann, and Oliver Stegle. 2018. “SpatialDE: identification of spatially variable genes.” Nat Methods 15 (May): 343–46. https://doi.org/10.1038/nmeth.4636.
“The Contiguity Ratio and Statistical Mapping on JSTOR.” 1954. Incorporated Statistician. https://www.jstor.org/stable/2986645.
Weber, Lukas M., and Helena L. Crowell. 2022. Ggspavis: Visualization Functions for Spatially Resolved Transcriptomics Data. https://github.com/lmweber/ggspavis.
Zhu, Jiaqiang, Shiquan Sun, and Xiang Zhou. 2021. “SPARK-X: non-parametric modeling enables scalable and robust detection of spatial expression patterns for large spatial transcriptomic studies.” Genome Biol 22 (1): 1–25. https://doi.org/10.1186/s13059-021-02404-0.