Chapter 1 The role of biostatistics in clinical research
Under development
From clinical inquiry book - not sure where this may apply in this text; maybe as a review in an appendix since they should know this (it is entry level material for most clinicians)
1.1 Preliminaries
1.1.1 Contingency Table
\(D\) | \(\neg D\) | |
---|---|---|
\(S\) | True Positive (TP) (a) | False Positive (FP) (b) |
\(\neg S\) | False Negative (FN) (c) | True Negative (TN) (d) |
1.1.2 Sensitivity / Specificity
Sensitivity: \(P(S|D)=\dfrac{a}{a+c}\) (Rate of True Positives)
Specificity: \(P(\neg S|\neg D)=\dfrac{d}{b+d}\) (Rate of True Negatives)
1 - Sensitivity: \(P(\neg S|D)=\dfrac{c}{a+c}\) (Rate of False Negatives)
1 - Specificity: \(P(S|\neg D)=\dfrac{b}{b+d}\) (Rate of False Positives)
1.1.3 Positive Likelihood Ratio
\(+LR=\dfrac{Sensitivity}{1-Specificity}\)
\(+LR=\dfrac{P(S|D)}{P(S|\neg D)}\)
\(+LR= \dfrac{P(TP)}{P(FP)}\)
\(+LR= \dfrac{a(b+d)}{b(a+c)}\)
1.1.4 Negative Likelihood Ratio
\(-LR=\dfrac{1-Sensitivity}{Specificity}\)
\(-LR=\dfrac{P(\neg S|D)}{P(\neg S|\neg D)}\)
\(-LR= \dfrac{P(FN)}{P(TN)}\)
\(-LR= \dfrac{c(b+d)}{d(a+c)}\)
1.2 Bayes Formula
\(P(D|S)=\dfrac{P(S|D)\cdot P(D)}{P(S)}\)
The \(P(D)\) and \(P(S)\) are the “priors” - or “baseline” probabilities of the disease and the sign
1.2.1 Alternative format
\(P(\neg D|\neg S)=\dfrac{P(\neg S|\neg D)\cdot P(\neg D)}{P(\neg S)}\)
The \(P(\neg D)\) and \(P(\neg S)\) are the “priors” - or “baseline” probabilities of not having the disease or the sign