• Copyright
  • Preface
    • Acknowledgments
    • Requirements
  • 1 Introduction to R, RStudio, and R Markdown
    • 1.1 Introduction to R, the language
      • 1.1.1 Benefits of R
      • 1.1.2 Packages
    • 1.2 RSudio
      • 1.2.1 Navigating RStudio
    • 1.3 R Markdown
  • 2 Basics of R
    • 2.1 R, as a Calculator
      • 2.1.1 Order of Operations
    • 2.2 Objects
    • 2.3 Functions
      • 2.3.1 Object Types
    • 2.4 Packages
      • 2.4.1 Installing Packages
      • 2.4.2 Loading Packages
      • 2.4.3 Updating Packages
    • 2.5 R Help
    • 2.6 Setting a Working Directory
    • 2.7 Importing Your Data
  • 3 Formatting, Describing, and Visualizing Data
    • 3.1 Factoring
      • 3.1.1 Coerce Factoring
    • 3.2 Recoding
      • 3.2.1 Factoring and Recoding
      • 3.2.2 Creating a Dummy Variable
    • 3.3 Part III: Building and Sorting Your Data
      • 3.3.1 The Tidyverse
      • 3.3.2 Other Methods of Exploring Your Data
    • 3.4 Working with Nominal Data
      • 3.4.1 Finding the Mode
      • 3.4.2 Visualizing Nominal Data
    • 3.5 Working with Ordinal Data
    • 3.6 Working with Interval Data
  • 4 Visualizing Data, Probability, the Normal Distribution, and Z Scores
    • 4.1 Histograms and Density
      • 4.1.1 Normal Distribution and Histograms
    • 4.2 Probability and Distributions
    • 4.3 Visualizing Normality
    • 4.4 Z-Scores
  • 5 Foundations for Inference
    • 5.1 Testing for Normality
      • 5.1.1 Shapiro-Wilk Test
      • 5.1.2 Testing Normality
    • 5.2 Standard Errors
    • 5.3 Confidence Intervals
    • 5.4 More on Single Sample T-tests
  • 6 Inference for Two Populations
    • 6.1 Proportions
      • 6.1.1 Two Populations
    • 6.2 Cross Tabulations
      • 6.2.1 Other Coefficients
    • 6.3 Independent t-tests
      • 6.3.1 Other Independent Sample Tests
    • 6.4 Paired t-test
    • 6.5 Visualizing Differences in Means
  • 7 Covariance and Correlation
    • 7.1 Covariance
      • 7.1.1 Covariance by Hand
      • 7.1.2 Covariance in R
      • 7.1.3 Covariance in Class Data Set
    • 7.2 Correlation
      • 7.2.1 Correlation by Hand
      • 7.2.2 Correlation Tests
      • 7.2.3 Correlation Across Groups
    • 7.3 Visualizing Correlation
      • 7.3.1 Another Example: Political Party
      • 7.3.2 One More Visualization
  • 8 Bivariate Linear Regression
    • 8.1 Bivariate Linear Regression by Hand
      • 8.1.1 Calculating Goodness of Fit
      • 8.1.2 Checking Our Work
    • 8.2 Bivariate Regression in R
    • 8.3 The Residuals
    • 8.4 Comparing Models
      • 8.4.1 Visualizing Multiple Models
    • 8.5 Hypothesis Testing
  • 9 Multivariable Linear Regression
    • 9.1 Calculating Least-Squared Estimates
      • 9.1.1 Matrix Algebra
      • 9.1.2 Representing System of Linear Equations as Matrices
      • 9.1.3 OLS Regression and Matrices
    • 9.2 Multiple Regression in R
    • 9.3 Hypothesis Testing with Multivariable Regression
      • 9.3.1 Visualizing Multivariable Linear Regression
    • 9.4 Predicting with OLS Regression
  • 10 Categorical Explanatory Variables, Dummy Variables, and Interactions
    • 10.1 Dummy Variables
      • 10.1.1 Multiple Dummy Variables
    • 10.2 Interactions
      • 10.2.1 Interactions with Two Non-binary Variables
    • 10.3 Releveling Variables
    • 10.4 Interaction Plots
  • 11 Non-linearity, Non-normality, and Multicollinearity
    • 11.1 Non-linearity
      • 11.1.1 Exploring Non-linearity
    • 11.2 Non-normality
    • 11.3 Multicollinearity
    • 11.4 Standardizing Coefficients
  • 12 Diagnosing and Addressing Problems in Linear Regression
    • 12.1 Introduction to the Data
    • 12.2 Outliers
    • 12.3 Heteroscedasticity
    • 12.4 Revisiting Linearity
      • 12.4.1 Normality
  • 13 Logistic Regression
    • 13.1 Logistic Regression with a Binary DV
      • 13.1.1 Goodness of Fit, Logit Regression
      • 13.1.2 Percent Correctly Predicted
      • 13.1.3 Logit Regression with Groups
    • 13.2 Ordered Logit and Creating an Index
  • 14 Statistical Simulations
    • 14.1 The Basics
      • 14.1.1 Plotting Predictions with Zelig
    • 14.2 Other Models
      • 14.2.1 Ordered Logit
      • 14.2.2 Another Example
    • 14.3 Zelig with non-Zelig Models:
  • 15 Appendix: Guide to Data Visualization
    • 15.1 Deciding Which Visualization to Use
      • For Exploring a Single Variable
      • For Displaying Two (or more) Variables
    • 15.2 Adding Labels
    • 15.3 Scale and Limits
    • 15.4 Visualizing Error
      • Confidence Intervals
      • Error Bars
    • 15.5 Adding Color
    • 15.6 Position Adjustments
    • 15.7 Using Themes
    • 15.8 Putting it All Together

Lab Guide to Quantitative Research Methods in Political Science, Public Policy & Public Administration

Lab Guide to Quantitative Research Methods in Political Science, Public Policy & Public Administration

Joseph Ripberger, Cody Adams, Alex Davis, and Josie Davis

Copyright