References

Alquier, P., N. Friel, R. Everitt, and A. Boland. 2016. “Noisy Monte Carlo: Convergence of Markov Chains with Approximate Transition Kernels.” Statistics and Computing 26 (1): 29–47.
Andrieu, C., L. Breyer, and A. Doucet. 2001. “Convergence of Simulated Annealing Using Foster-Lyapunov Criteria.” Journal of Applied Probability 38 (4): 975–94.
Andrieu, C., A. Doucet, and R. Holenstein. 2010. “Particle Markov Chain Monte Carlo.” Journal of the Royal Statistical Society B 72 (3): 269–342.
Andrieu, C., and G. O. Roberts. 2009. “The Pseudo-Marginal Approach for Efficient Monte Carlo Computations.” Annals of Statistics 37 (2): 697–725.
Bardenet, R., A. Doucet, and C. Holmes. 2017. “On Markov chain Monte Carlo Methods for Tall Data.” The Journal of Machine Learning Research 18 (1): 1515–57.
Barnard, G. A. 1963. “Discussion of Prof. Bartlett’s Paper.” Journal of the Royal Statistical Society B 25 (2): 294.
Beaumont, M. 2003. “Estimation of Population Growth or Decline in Genetically Monitored Populations.” Genetics 164 (3): 1139–60.
Besag, J., and P. Diggle. 1977. “Simple Monte Carlo Tests for Spatial Pattern.” Journal of the Royal Statistical Society C 26 (3): 327–33.
Box, G. E. P., and M. E. Muller. 1958. “A Note on the Generation of Normal Random Deviates.” Annals of Mathematical Statistics 29 (2): 610–11.
Brockwell, P. J., and R. A. Davis. 1991. Time Series: Theory and Methods. 2nd ed. New York: Springer.
Brooks, S., and A. Gelman. 1998. “General Methods for Monitoring Convergence of Iterative Simulations.” Journal of Computational and Graphical Statistics 7 (4): 434–55.
Brooks, S., A. Gelman, G. L. Jones, and X.-L. Meng, eds. 2011. Handbook of Markov Chain Monte Carlo. CRC Press.
Chen, Y. 2005. “Another Look at Rejection Sampling Through Importance Sampling.” Statistics & Probability Letters 72 (4): 277–83.
Chopin, N. 2001. “Sequential Inference and State Number Determination for Discrete State-Space Models Through Particle Filtering.” Working Paper 2001-34. Laboratoire de Statistique, CREST, INSEE, Timbre J120, 75675 Paris cedex 14, France: CREST.
Davison, A. C., D. V. Hinkley, and G. A. Young. 2003. “Recent Developments in Bootstrap Methodology.” Statistical Science 18 (2): 141–57.
Del Moral, P. 2004. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications. Probability and Its Applications. New York: Springer Verlag.
———. 2013. Mean Field Integration. Chapman Hall.
Del Moral, P., A. Doucet, and A. Jasra. 2006. “Sequential Monte Carlo Samplers.” Journal of the Royal Statistical Society B 63 (3): 411–36.
———. 2012. “An Adaptive Sequential Monte Carlo Method for Approximate Bayesian Computation.” Statistics and Computing 22 (5): 1009–20.
Devroye, L. 1986. Non-Uniform Random Variate Generation. New York: Springer Verlag.
Didelot, X., R. G. Everitt, A. M. Johansen, and D. J. Lawson. 2011. “Likelihood-Free Estimation of Model Evidence.” Bayesian Analysis 6 (1): 49–76.
Diggle, P. J., and R. J. Gratton. 1984. Monte Carlo Methods of Inference for Implicit Statistical Models.” Journal of the Royal Statistical Society B 46: 193–227.
Doucet, A., S. J. Godsill, and C. P. Robert. 2002. “Marginal Maximum a Posteriori Estimation Using Markov Chain Monte Carlo.” Statistics and Computing 12: 77–84.
Doucet, A., and A. M. Johansen. 2011. “A Tutorial on Particle Filtering and Smoothing: Fiteen Years Later.” In The Oxford Handbook of Nonlinear Filtering, edited by D. Crisan and B. Rozovsky, 656–704. Oxford University Press.
Escobar, M. D., and M. West. 1995. Bayesian Density Estimation and Inference Using Mixtures.” Journal of the American Statistical Association 90 (430): 577–88.
Everitt, R. G., A. M. Johansen, E. Rowing, and M. Evdemon-Hogan. 2017. Bayesian Model Selection with Un-Normalised Likelihoods.” Statistics and Computing 27 (2): 403–22.
Fahrmeir, L., and G. Tutz. 2001. Multivariate Statistical Modelling Based on Generalised Linear Models. 2nd ed. New York: Springer.
Fearnhead, P., J. Bierkens, M. Pollock, and G. O. Roberts. 2018. “Piecewise Deterministic Markov Processes for Continuous-Time Monte Carlo.” Statistical Science 33 (3): 386–412.
Gaetan, C., and J.-F. Yao. 2003. “A Multiple-Imputation Metropolis Version of the EM Algorithm.” Biometrika 90 (3): 643–54.
Gelfand, A. E., and A. F. M. Smith. 1990. “Sampling Based Approaches to Calculating Marginal Densities.” Journal of the American Statistical Association 85: 398–409.
Gelman, A., G. O. Roberts, and W. R. Gilks. 1995. “Efficient Metropolis Jumping Rules.” In Bayesian Statistics, edited by J. M. Bernado, J. Berger, A. Dawid, and A. Smith, 5:599–607. Oxford: Oxford University Press.
Gelman, A., and B. D. Rubin. 1992. “Inference from Iterative Simulation Using Multiple Sequences.” Statistical Science 7: 457–72.
Geman, S., and D. Geman. 1984. “Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images.” IEEE Transactions on Pattern Analysis and Machine Intelligence 6 (6): 721–41.
Gerber, Mathieu, and Nicolas Chopin. 2015. “Sequential Quasi Monte Carlo.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 77 (3): 509–79.
Gerber, M., N. Chopin, and N. Whiteley. 2019. “Negative Association, Ordering and Convergence of Resampling Methods.” Annals of Statistics 47 (4): 2236–60.
Geweke, J. 1989. Bayesian Inference in Econometrics Models Using Monte Carlo Integration.” Econometrica 57 (6): 1317–39.
Girolami, M., and B. Calderhead. 2011. “Riemann Manifold Langevin and Hamiltonian Monte Carlo Methods.” Journal of the Royal Statistical Society B 73 (2): 123–214.
Goertzel, G. 1949. “Quota Sampling and Importance Functions in Stochastic Solution of Particle Problems.” Technical Report ORNL-434. Oak Ridge National Laboratory, Tennessee, USA: Oak Ridge National Laboratory.
Gong, L., and J. M. Flegal. 2016. “A Practical Sequential Stopping Rule for High- Dimensional Markov Chain Monte Carlo.” Journal of Computational and Graphical Statistics 25 (3): 684–700.
Gordon, N. J., S. J. Salmond, and A. F. M. Smith. 1993. “Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation.” IEE Proceedings-F 140 (2): 107–13.
Grelaud, A., C. P. Robert, J.-M. Marin, F. Rodolphe, and J.-F. Taly. 2009. ABC Likelihood-Free Methodology for Model Choice in Gibbs Random Fields.” Bayesian Analysis 4 (2): 317–36.
Guihennec-Jouyaux, C., K. L. Mengersen, and C. P. Robert. 1998. MCMC Convergence Diagnostics: A ‘Reviewww’.” 9816. Institut National de la Statistique et des Etudes Economiques.
Hajek, B. 1988. “Cooling Schedules for Optimal Annealing.” Mathematics of Operations Research 13 (2): 311–29.
Hall, Peter. 1986. “On the Bootstrap and Confidence Intervals.” The Annals of Statistics, 1431–52.
Halton, J. H. 1970. “A Retrospective and Prospective Survey of the Monte Carlo Method.” SIAM Review 12 (1): 1–63.
Hastings, W. K. 1970. Monte Carlo Sampling Methods Using Markov Chains and Their Applications.” Biometrika 52: 97–109.
Hwang, C.-R. 1980. Laplace’s Method Revisited: Weak Convergence of Probability Measures.” Annals of Probability 8 (6): 1177–82.
Jacquier, E., M. Johannes, and N. Polson. 2007. MCMC Maximum Likelihood for Latent State Models.” Journal of Econometrics 137 (2): 615–40.
Johansen, A. M. 2009. Markov Chains.” In Encyclopaedia of Computer Science and Engineering, edited by Benjamin W. Wah, 4:1800–1808. 111 River Street, MS 8-02, Hoboken, NJ 07030-5774: John Wiley; Sons, Inc.
Johansen, A. M., A. Doucet, and M. Davy. 2008. “Particle Methods for Maximum Likelihood Parameter Estimation in Latent Variable Models.” Statistics and Computing 18 (1): 47–57.
Jones, G. L. 2004. “On the Markov Chain Central Limit Theorem.” Probability Surveys 1: 299–320.
Kirkpatrick, S., C. D. Gelatt Jr., and M. P. Vecchi. 1983. “Optimization by Simulated Annealing.” Science 270 (4598): 671–80.
Liu, J. S. 2001. Monte Carlo Strategies in Scientific Computing. Springer Series in Statistics. New York: Springer Verlag.
Liu, J. S., W. H. Wong, and A. Kong. 1995. “Covariance Structure and Convergence Rate of the Gibbs Sampler with Various Scans.” Journal of the Royal Statistical Society B 57 (1): 157–69.
Marin, J.-M., N. Pillai, C. P. Robert, and J. Rousseau. 2014. “Relevant Statistics for Bayesian Model Choice.” Journal of the Royal Statistical Society B.
Marjoram, P., J. Molitor, V. Plagnol, and S. Tavaré. 2003. Markov chain Monte Carlo without likelihoods.” Proceedings of the National Academy of Sciences (U.S.A.) 100 (26): 15324–28.
Matsumoto, M., and T. Nishimura. 1998. “Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator.” ACM Transactions on Modeling and Computer Simulation 8 (1): 3–30.
Medina-Aguayo, F. J., A. Lee, and G. O. Roberts. 2016. “Stability of Noisy Metropolis-Hastings.” Statistics and Computing 26 (6): 1187–1211.
Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller. 1953. “Equation of State Calculations by Fast Computing Machines.” Journal of Chemical Physics 21: 1087–92.
Meyn, S. P., and R. L. Tweedie. 1993. Markov Chains and Stochastic Stability. Springer Verlag. http://black.csl.uiuc.edu/~meyn/pages/TOC.html.
Morokoff, W. J., and R. E. Caflisch. 1995. “Quasi-Monte Carlo Integration.” J. Comp. Phys. 122: 218–30.
Neal, R. 2011. MCMC Using Hamiltonian Dynamics.” In Handbook of Markov Chain Monte Carlo, edited by S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng, 113–62. CRC Press.
Neal, R. M. 2001. “Annealed Importance Sampling.” Statistics and Computing 11: 125–39.
Niederreiter, H. 1992. Random Number Generation and Quasi-Monte Carlo Methods. Society for Industrial; Applied Mathematics.
Nummelin, E. 1984. General Irreducible Markov Chains and Non-Negative Operators. 1st Paperback. Cambridge Tracts in Mathematics 83. Cambridge University Press.
Owen, A. O. 2017. “Statistically Efficient Thinning of a Markov chain Sampler.” Journal of Computational and Graphical Statistics 26 (3): 738–44.
Perron, F. 1999. “Beyond Accept-Reject Sampling.” Biometrika 86 (4): 803–13.
Peters, G. W., Y. Fan, and S. Sisson. 2012. “On Sequential Monte Carlo, Partial Rejection Control and Approximate Bayesian Computation.” Statistics and Computing 22 (6): 1209–22.
Philippe, A., and C. P. Robert. 2001. “Riemann Sums for MCMC Estimation and Convergence Monitoring.” Statistics and Computing 11 (2): 103–15.
Pritchard, J. K., M. T. Seielstad, A. Perez-Lezaun, and M. W. Feldman. 1999. Population growth of human Y chromosomes: a study of Y chromosome microsatellites.” Mol Biol Evol 16 (12): 1791–98.
R Core Team. 2013. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/.
Robert, C. P., and G. Casella. 2004. Monte Carlo Statistical Methods. Second. New York: Springer Verlag.
Robert, C. P., J. M. Cornuet, J. M. Marin, and N. S. Pillai. 2011. “Lack of Confidence in Approximate Bayesian Computational (ABC) Model Choice.” Proceedings of the National Academy of Science, USA 108 (37): 15112–17.
Roberts, G. 1996. Markov Chain Concepts Related to Sampling Algorithms.” In Markov Chain Monte Carlo in Practice, edited by W. R. Gilks, S. Richardson, and D. J. Spieghalter, first, 45–54. Chapman; Hall.
Roberts, G. O., A. Gelman, and W. Gilks. 1997. “Weak Convergence and Optimal Scaling of Random Walk Metropolis Algorithms.” Annals of Applied Probability 7 (1): 110–20.
Roberts, G. O., and J. S. Rosenthal. 2004. “General State Space Markov Chains and MCMC Algorithms.” Probability Surveys 1: 20–71.
———. 2011. “Quantitative Non-Geometric Convergence Bounds for Independence Samplers.” Methodology and Computing in Applied Probability 13: 391–403.
Roberts, G., and R. Tweedie. 1996. “Geometric Convergence and Central Limit Theorems for Multivariate Hastings and Metropolis Algorithms.” Biometrika 83: 95–110.
Roeder, K. 1990. “Density Estimation with Cofidence Sets Exemplified by Superclusters and Voids in Galaxies.” Journal of the American Statistical Association 85 (411): 617–24.
Roeder, K., and L. Wasserman. 1997. “Practical Bayesian Density Estimation Using Mixtures of Normals.” Journal of the American Statistical Association 92 (439): 894–902.
Salmon, J. K., M. A. Moraes, R. O. Dror, and D. E. Shaw. 2011. “Parallel Random Numbers: As Easy as 1, 2, 3.” In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis.
Sisson, S. A., Y. Fan, and M. M. Tanaka. 2007. “Sequential Monte Carlo Without Likelihoods.” Proceedings of the National Academy of Science, USA 104 (4): 1760–65.
Stephens, M. 2007. “Inference Under the Coalescent.” In Handbook of Statistical Genetics, edited by D. Balding, M. Bishop, and C. Cannings, 878–908. Wiley, Chichester, UK.
Tanner, M. A., and W. H. Wong. 1987. “The Calculation of Posterior Distributions by Data Augmentation.” Journal of the American Statistical Association 82 (398): 528–40.
Tavaré, S., D. J. Balding, R. C. Griffiths, and P. Donnelly. 1997. “Inferring Coalescence Times from DNA Sequence Data.” Geneetics 145: 505–18.
Tierney, L. 1994. Markov Chains for Exploring Posterior Distributions.” Annals of Statistics 22: 1701–62.
———. 1996. “Introduction to General State Space Markov Chain Theory.” In Markov Chain Monte Carlo in Practice, edited by W. R. Gilks, S. Richardson, and D. J. Spieghalter, first, 59–74. Chapman; Hall.
Voss, J. 2013. An Introduction to Statistical Computing: A Simulation-Based Approach. Wiley.
Young, G. A. 1994. “Bootstrap: More Than a Stab in the Dark?” Statistical Science 9 (3): 382–95.